These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 29053345)

  • 1. An ecofriendly approach for bioremediation of contaminated water environment: Potential contribution of a coastal seaweed community to environmental improvement.
    Deniz F; Ersanli ET
    Int J Phytoremediation; 2018 Feb; 20(3):256-263. PubMed ID: 29053345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A natural macroalgae consortium for biosorption of copper from aqueous solution: Optimization, modeling and design studies.
    Deniz F; Ersanli ET
    Int J Phytoremediation; 2018 Mar; 20(4):362-368. PubMed ID: 29584470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a novel phyco-composite biosorbent for the biotreatment of aqueous medium polluted with manganese ions.
    Deniz F; Ersanli ET
    Int J Phytoremediation; 2018 Jan; 20(2):138-144. PubMed ID: 28621546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioremediation potential of a widespread industrial biowaste as renewable and sustainable biosorbent for synthetic dye pollution.
    Deniz F; Yildiz H
    Int J Phytoremediation; 2019; 21(3):259-267. PubMed ID: 30652489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosorption of nickel(II) and copper(II) ions from synthetic and real effluents by alginate-based biosorbent produced from seaweed Sargassum sp.
    Barquilha CER; Cossich ES; Tavares CRG; da Silva EA
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):11100-11112. PubMed ID: 30788702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosorption of Rhodamine B onto novel biosorbents from Kappaphycus alvarezii, Gracilaria salicornia and Gracilaria edulis.
    Selvakumar A; Rangabhashiyam S
    Environ Pollut; 2019 Dec; 255(Pt 2):113291. PubMed ID: 31600701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy Metal Adsorption onto Kappaphycus sp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models.
    Rahman MS; Sathasivam KV
    Biomed Res Int; 2015; 2015():126298. PubMed ID: 26295032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taguchi DoE methodology for modeling of synthetic dye biosorption from aqueous effluents: parametric and phenomenological studies.
    Deniz F; Yildiz H
    Int J Phytoremediation; 2019; 21(11):1065-1071. PubMed ID: 31025570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of Food Green 3 by a novel green generation composite biosorbent from aqueous environment.
    Deniz F; Kepekci RA
    Int J Phytoremediation; 2017 Jun; 19(6):579-586. PubMed ID: 27936896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A renewable biosorbent material for green decontamination of heavy metal pollution from aquatic medium: a case study on manganese removal.
    Deniz F; Tezel Ersanli E
    Int J Phytoremediation; 2021; 23(3):231-237. PubMed ID: 32820944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel biowaste-based biosorbent material for effective purification of methylene blue from water environment.
    Deniz F; Tezel Ersanli E
    Int J Phytoremediation; 2022; 24(12):1243-1250. PubMed ID: 35014910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of copper(II) and cadmium(II) ions from aqueous solutions by biosorption onto pine cone.
    Değirmen G; Kılıç M; Cepelioğullar O; Pütün AE
    Water Sci Technol; 2012; 66(3):564-72. PubMed ID: 22744687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Cd
    Xu S; Xing Y; Liu S; Hao X; Chen W; Huang Q
    Chemosphere; 2020 Feb; 240():124893. PubMed ID: 31550585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical optimization, kinetic, equilibrium isotherm and thermodynamic studies of copper biosorption onto Rosa damascena leaves as a low-cost biosorbent.
    Fawzy MA; Al-Yasi HM; Galal TM; Hamza RZ; Abdelkader TG; Ali EF; Hassan SHA
    Sci Rep; 2022 May; 12(1):8583. PubMed ID: 35595800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low-cost and eco-friendly biosorbent material for effective synthetic dye removal from aquatic environment: characterization, optimization, kinetic, isotherm and thermodynamic studies.
    Deniz F; Tezel Ersanli E
    Int J Phytoremediation; 2020; 22(4):353-362. PubMed ID: 31512499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioremediation potential of waste biomaterials originating from coastal Zostera marina L. meadows for polluted aqueous media with industrial effluents.
    Deniz F
    Prog Biophys Mol Biol; 2019 Aug; 145():78-84. PubMed ID: 30615891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equilibrium, kinetics, and thermodynamics study on the biosorption of reactive levofloxacin antibiotic on Pithophora macroalgae in aqueous solution.
    Khamayseh MM; Kidak R
    Environ Monit Assess; 2023 Jan; 195(2):301. PubMed ID: 36645500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosorptive application of defatted Laurus nobilis leaves as a waste material for treatment of water contaminated with heavy metal.
    Gümüş D
    Int J Phytoremediation; 2019; 21(6):556-563. PubMed ID: 30729808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosorption of heavy metal ions from aqueous solution by red macroalgae.
    Ibrahim WM
    J Hazard Mater; 2011 Sep; 192(3):1827-35. PubMed ID: 21798665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.