These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 29053352)
1. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Galal TM; Eid EM; Dakhil MA; Hassan LM Int J Phytoremediation; 2018 Apr; 20(5):440-447. PubMed ID: 29053352 [TBL] [Abstract][Full Text] [Related]
2. The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt. Galal TM; Farahat EA Environ Monit Assess; 2015 Nov; 187(11):701. PubMed ID: 26497561 [TBL] [Abstract][Full Text] [Related]
3. Assessment of plant growth attributes, bioaccumulation, enrichment, and translocation of heavy metals in water lettuce (Pistia stratiotes L.) grown in sugar mill effluent. Kumar V; Singh J; Chopra AK Int J Phytoremediation; 2018 Apr; 20(5):507-521. PubMed ID: 29608378 [TBL] [Abstract][Full Text] [Related]
4. Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Lu Q; He ZL; Graetz DA; Stoffella PJ; Yang X Environ Sci Pollut Res Int; 2011 Jul; 18(6):978-86. PubMed ID: 21287283 [TBL] [Abstract][Full Text] [Related]
5. Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands. Galal TM; Gharib FA; Ghazi SM; Mansour KH Environ Sci Pollut Res Int; 2017 Sep; 24(27):21636-21648. PubMed ID: 28752307 [TBL] [Abstract][Full Text] [Related]
6. The role of Cyperus alopecuroides Rottb. sedge in monitoring water pollution in contaminated wetlands in Egypt: a phytoremediation approach. Galal TM; Shedeed ZA; Gharib FA; Al-Yasi HM; Mansour KH Environ Sci Pollut Res Int; 2021 May; 28(18):23005-23016. PubMed ID: 33438123 [TBL] [Abstract][Full Text] [Related]
7. Heavy metal uptake by water lettuce (Pistia stratiotes L.) from paper mill effluent (PME): experimental and prediction modeling studies. Kumar V; Singh J; Kumar P Environ Sci Pollut Res Int; 2019 May; 26(14):14400-14413. PubMed ID: 30868462 [TBL] [Abstract][Full Text] [Related]
8. Trace metal accumulation by Ranunculus sceleratus: implications for phytostabilization. Farahat EA; Galal TM Environ Sci Pollut Res Int; 2018 Feb; 25(5):4214-4222. PubMed ID: 29177787 [TBL] [Abstract][Full Text] [Related]
9. Bioaccumulation and translocation of nine heavy metals by Eid EM; Shaltout KH; Moghanm FS; Youssef MSG; El-Mohsnawy E; Haroun SA Int J Phytoremediation; 2019; 21(8):821-830. PubMed ID: 30784295 [TBL] [Abstract][Full Text] [Related]
10. Organic acid enhanced soil risk element (Cd, Pb and Zn) leaching and secondary bioconcentration in water lettuce (Pistia stratiotes L.) in the rhizofiltration process. Veseý T; Tlustos P; Száková J Int J Phytoremediation; 2012 Apr; 14(4):335-49. PubMed ID: 22567715 [TBL] [Abstract][Full Text] [Related]
11. Experiments and modeling to develop a Pistia stratiotes based Floating Vegetated System (FVS) for the removal of heavy metals (Pb, Zn, Cr, Cu, Ni). Samal K; Dash RR Sci Total Environ; 2024 May; 926():171981. PubMed ID: 38547997 [TBL] [Abstract][Full Text] [Related]
12. Seasonal variation of heavy metals in water and sediments in the Halda River, Chittagong, Bangladesh. Bhuyan MS; Bakar MA Environ Sci Pollut Res Int; 2017 Dec; 24(35):27587-27600. PubMed ID: 28980109 [TBL] [Abstract][Full Text] [Related]
13. Spatio-temporal variations in physico-chemical parameters and potentially harmful elements (PHEs) of Uchalli Wetlands Complex (Ramsar site), Pakistan. Bhatti SG; Tabinda AB; Yasin F; Yasar A; Butt HI; Wajahat R Environ Sci Pollut Res Int; 2018 Nov; 25(33):33490-33507. PubMed ID: 30267346 [TBL] [Abstract][Full Text] [Related]
14. Pistia stratiotes in the phytoremediation and post-treatment of domestic sewage. Schwantes D; Gonçalves AC; Schiller ADP; Manfrin J; Campagnolo MA; Somavilla E Int J Phytoremediation; 2019; 21(7):714-723. PubMed ID: 30656947 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of electro-assisted phytoremediation (EAPR) system for heavy metal removal from synthetic leachate using Chan MY; Tee CS; Chai TT; Sim YL; Beh WL Int J Phytoremediation; 2022; 24(13):1376-1384. PubMed ID: 35191343 [TBL] [Abstract][Full Text] [Related]
16. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology. Lakra KC; Lal B; Banerjee TK Int J Phytoremediation; 2017 Jun; 19(6):530-536. PubMed ID: 27936868 [TBL] [Abstract][Full Text] [Related]
17. Bioaccumulation of heavy metals in a gastropod species at the Kole wetland agroecosystem, a Ramsar site. Menon M; Mohanraj R; Vb J; Prasath Rv A J Environ Manage; 2023 Mar; 329():117027. PubMed ID: 36571953 [TBL] [Abstract][Full Text] [Related]
18. Metals uptake and translocation in salt marsh macrophytes, Porteresia sp. from Bangladesh coastal area. Hossain MB; Rakib MRJ; Jolly YN; Rahman M Sci Total Environ; 2021 Apr; 764():144637. PubMed ID: 33385646 [TBL] [Abstract][Full Text] [Related]
19. Heavy metals concentration, and antioxidant activity of the essential oil of the wild mint ( Gharib FA; Mansour KH; Ahmed EZ; Galal TM Int J Phytoremediation; 2021; 23(6):641-651. PubMed ID: 33232173 [TBL] [Abstract][Full Text] [Related]
20. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the Huang X; Zhao F; Yu G; Song C; Geng Z; Zhuang P Biomed Res Int; 2017; 2017():6201048. PubMed ID: 28717650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]