These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29053353)

  • 1. Effect of two biodegradable chelates on metals uptake, translocation and biochemical changes of Lantana Camara growing in fly ash amended soil.
    Pandey SK; Bhattacharya T
    Int J Phytoremediation; 2018 Feb; 20(3):214-224. PubMed ID: 29053353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India.
    Pandey SK; Bhattacharya T; Chakraborty S
    Int J Phytoremediation; 2016; 18(1):87-93. PubMed ID: 26147810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area.
    Singh R; Singh DP; Kumar N; Bhargava SK; Barman SC
    J Environ Biol; 2010 Jul; 31(4):421-30. PubMed ID: 21186714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India.
    Mukhopadhyay S; Rana V; Kumar A; Maiti SK
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Brassica juncea (L.) Czern. (var. Vaibhav) in the phytoextraction of Ni from soil amended with fly ash: selection of extractant for metal bioavailability.
    Gupta AK; Sinha S
    J Hazard Mater; 2006 Aug; 136(2):371-8. PubMed ID: 16434138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth performance, metal accumulation and biochemical responses of Palak (Beta vulgaris L. var. Allgreen H-1) grown on soil amended with sewage sludge-fly ash mixtures.
    Sharma B; Kothari R; Singh RP
    Environ Sci Pollut Res Int; 2018 May; 25(13):12619-12640. PubMed ID: 29468393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of coal fly ash and use of plants growing in ash pond for phytoremediation of metals from contaminated agricultural land.
    Kisku GC; Kumar V; Sahu P; Kumar P; Kumar N
    Int J Phytoremediation; 2018 Mar; 20(4):330-337. PubMed ID: 29584466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhizosphere properties and heavy metal accumulation of plants growing in the fly ash dumpsite, Morupule power plant, Botswana.
    Gajaje K; Ultra VU; David PW; Rantong G
    Environ Sci Pollut Res Int; 2021 Apr; 28(16):20637-20649. PubMed ID: 33405121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration.
    Tandy S; Schulin R; Nowack B
    Environ Sci Technol; 2006 Apr; 40(8):2753-8. PubMed ID: 16683619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Jatropha curcas: a potential crop for phytoremediation of coal fly ash.
    Jamil S; Abhilash PC; Singh N; Sharma PN
    J Hazard Mater; 2009 Dec; 172(1):269-75. PubMed ID: 19640648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of earthworms on plant Lantana camara Pb-uptake and on bacterial communities in root-adhering soil.
    Jusselme MD; Poly F; Miambi E; Mora P; Blouin M; Pando A; Rouland-Lefèvre C
    Sci Total Environ; 2012 Feb; 416():200-7. PubMed ID: 22221873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of open dumping of MSW on metal contamination of soil, plants, and earthworms in Ranchi, Jharkhand, India.
    Singh M; Verma M; Kumar RN
    Environ Monit Assess; 2018 Feb; 190(3):139. PubMed ID: 29442190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation potential of naturally growing weed plants grown on fly ash-amended soil for restoration of fly ash deposit.
    Panda D; Mandal L; Barik J
    Int J Phytoremediation; 2020; 22(11):1195-1203. PubMed ID: 32356449
    [No Abstract]   [Full Text] [Related]  

  • 14. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers.
    Tandy S; Schulin R; Nowack B
    Chemosphere; 2006 Mar; 62(9):1454-63. PubMed ID: 16083944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals.
    Meers E; Ruttens A; Hopgood MJ; Samson D; Tack FM
    Chemosphere; 2005 Feb; 58(8):1011-22. PubMed ID: 15664609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation of metals from fly ash through bacterial augmentation.
    Kumari B; Singh SN
    Ecotoxicology; 2011 Jan; 20(1):166-76. PubMed ID: 21080221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India.
    Maiti SK; Jaiswal S
    Environ Monit Assess; 2008 Jan; 136(1-3):355-70. PubMed ID: 17429748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoextraction of metals by Erigeron canadensis L. from fly ash landfill of power plant "Kolubara".
    Krgović R; Trifković J; Milojković-Opsenica D; Manojlović D; Marković M; Mutić J
    Environ Sci Pollut Res Int; 2015 Jul; 22(14):10506-15. PubMed ID: 25728199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants.
    Sinha S; Gupta AK
    Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of biodegradable chelating agents in the phytoextraction of heavy metals from multi-metal contaminated soil.
    Diarra I; Kotra KK; Prasad S
    Chemosphere; 2021 Jun; 273():128483. PubMed ID: 33129560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.