These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29053446)

  • 1. Simulation of Constrained Musculoskeletal Systems in Task Space.
    Stanev D; Moustakas K
    IEEE Trans Biomed Eng; 2018 Feb; 65(2):307-318. PubMed ID: 29053446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotics-based synthesis of human motion.
    Khatib O; Demircan E; De Sapio V; Sentis L; Besier T; Delp S
    J Physiol Paris; 2009; 103(3-5):211-9. PubMed ID: 19665552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Interactive Simulator for Imposing Virtual Musculoskeletal Dynamics.
    Hasson CJ
    IEEE Trans Biomed Eng; 2018 Mar; 65(3):539-549. PubMed ID: 28499991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force Closure Mechanism Modeling for Musculoskeletal Multibody Simulation.
    Geier A; Aschemann H; D Lima D; Woernle C; Bader R
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2471-2482. PubMed ID: 29993490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A forward-muscular inverse-skeletal dynamics framework for human musculoskeletal simulations.
    S Shourijeh M; Smale KB; Potvin BM; Benoit DL
    J Biomech; 2016 Jun; 49(9):1718-1723. PubMed ID: 27106173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic analysis of over-determinate biomechanical systems.
    Andersen MS; Damsgaard M; Rasmussen J
    Comput Methods Biomech Biomed Engin; 2009 Aug; 12(4):371-84. PubMed ID: 18949590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilevel Optimization for Cost Function Determination in Dynamic Simulation of Human Gait.
    Nguyen VQ; Johnson RT; Sup FC; Umberger BR
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1426-1435. PubMed ID: 31199264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical method for simulating the dynamics of human walking.
    Pandy MG; Berme N
    J Biomech; 1988; 21(12):1043-51. PubMed ID: 2577950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stiffness modulation of redundant musculoskeletal systems.
    Stanev D; Moustakas K
    J Biomech; 2019 Mar; 85():101-107. PubMed ID: 30709554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data.
    Thelen DG; Anderson FC
    J Biomech; 2006; 39(6):1107-15. PubMed ID: 16023125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Concurrent Framework for Constrained Inverse Kinematics of Minimally Invasive Surgical Robots.
    Colan J; Davila A; Fozilov K; Hasegawa Y
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A superellipsoid-plane model for simulating foot-ground contact during human gait.
    Lopes DS; Neptune RR; Ambrósio JA; Silva MT
    Comput Methods Biomech Biomed Engin; 2016; 19(9):954-63. PubMed ID: 26325481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time inverse kinematics techniques for anthropomorphic limbs.
    Tolani D; Goswami A; Badler NI
    Graph Models; 2000 Sep; 62(5):353-88. PubMed ID: 12143897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of aperiodic bipedal sprinting.
    Celik H; Piazza SJ
    J Biomech Eng; 2013 Aug; 135(8):81008. PubMed ID: 23722442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Optimization Framework to Improve the Computational Cost of Muscle Activation Prediction for a Neuromusculoskeletal System.
    Rahmati SMA; Rostami M; Karimi A
    Neural Comput; 2019 Mar; 31(3):574-595. PubMed ID: 30645182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study.
    Hussain S; Xie SQ; Jamwal PK
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):442-51. PubMed ID: 23193249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical characterization of slope walking using musculoskeletal model simulation.
    Kawada M; Hata K; Kiyama R; Maeda T; Yone K
    Acta Bioeng Biomech; 2018; 20(1):117-125. PubMed ID: 29658520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses.
    Steele KM; Tresch MC; Perreault EJ
    J Neurophysiol; 2015 Apr; 113(7):2102-13. PubMed ID: 25589591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement.
    Seth A; Pandy MG
    J Biomech; 2007; 40(2):356-66. PubMed ID: 16513124
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.