These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 29053610)

  • 1. Lab-on-Chip, Surface-Enhanced Raman Analysis by Aerosol Jet Printing and Roll-to-Roll Hot Embossing.
    Habermehl A; Strobel N; Eckstein R; Bolse N; Mertens A; Hernandez-Sosa G; Eschenbaum C; Lemmer U
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29053610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optofluidic microsystem with quasi-3 dimensional gold plasmonic nanostructure arrays for online sensitive and reproducible SERS detection.
    Deng Y; Idso MN; Galvan DD; Yu Q
    Anal Chim Acta; 2015 Mar; 863():41-8. PubMed ID: 25732311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injection-Molded Microfluidic Device for SERS Sensing Using Embedded Au-Capped Polymer Nanocones.
    Viehrig M; Thilsted AH; Matteucci M; Wu K; Catak D; Schmidt MS; Zór K; Boisen A
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37417-37425. PubMed ID: 30277378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Cost, Disposable, Flexible and Highly Reproducible Screen Printed SERS Substrates for the Detection of Various Chemicals.
    Wu W; Liu L; Dai Z; Liu J; Yang S; Zhou L; Xiao X; Jiang C; Roy VA
    Sci Rep; 2015 May; 5():10208. PubMed ID: 25974125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Batch fabrication of disposable screen printed SERS arrays.
    Qu LL; Li DW; Xue JQ; Zhai WL; Fossey JS; Long YT
    Lab Chip; 2012 Mar; 12(5):876-81. PubMed ID: 22173817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers.
    Liu X; Lebedkin S; Besser H; Pfleging W; Prinz S; Wissmann M; Schwab PM; Nazarenko I; Guttmann M; Kappes MM; Lemmer U
    ACS Nano; 2015 Jan; 9(1):260-70. PubMed ID: 25514354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.
    Choi S; Ahn M; Kim J
    Anal Chim Acta; 2013 May; 779():1-7. PubMed ID: 23663665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paper-based microfluidic approach for surface-enhanced raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration.
    Saha A; Jana NR
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):996-1003. PubMed ID: 25521159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Sensitive and Reproducible SERS Substrates Based on Ordered Micropyramid Array and Silver Nanoparticles.
    Zhang C; Chen S; Jiang Z; Shi Z; Wang J; Du L
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):29222-29229. PubMed ID: 34115481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis.
    Quang LX; Lim C; Seong GH; Choo J; Do KJ; Yoo SK
    Lab Chip; 2008 Dec; 8(12):2214-9. PubMed ID: 19023489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical optimization of nanocomposite surface-enhanced Raman spectroscopy/scattering detection in microfluidic separation devices.
    Connatser RM; Cochran M; Harrison RJ; Sepaniak MJ
    Electrophoresis; 2008 Apr; 29(7):1441-50. PubMed ID: 18386301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of plasmon length-based surface enhanced Raman scattering for multiplex detection on microfluidic device.
    Nguyen AH; Lee J; Il Choi H; Seok Kwak H; Jun Sim S
    Biosens Bioelectron; 2015 Aug; 70():358-65. PubMed ID: 25841120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid, one-step preparation of SERS substrate in microfluidic channel for detection of molecules and heavy metal ions.
    Yan S; Chu F; Zhang H; Yuan Y; Huang Y; Liu A; Wang S; Li W; Li S; Wen W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117113. PubMed ID: 31141779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization-dependent surface-enhanced Raman scattering (SERS) from microarrays.
    Hong KY; Brolo AG
    Anal Chim Acta; 2017 Jun; 972():73-80. PubMed ID: 28495098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated EC-SERS Chip with Uniform Nanostructured EC-SERS Active Working Electrode for Rapid Detection of Uric Acid.
    Huang CY; Hsiao HC
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33321761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Mass-Produced Substrates for Reproducible Surface-Enhanced Raman Scattering Measurements over Large Areas.
    Reyer A; Prinz A; Giancristofaro S; Schneider J; Bertoldo Menezes D; Zickler G; Bourret GR; Musso ME
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25445-25454. PubMed ID: 28737921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots.
    Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J
    Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-Free Protein Analysis by Pyro-Electrohydrodynamic Jet Printing of Gold Nanoparticles.
    Vespini V; Grilli S; Ferraro P; Rega R; Ottevaere H; Nie Y; Musto P; Pannico M
    Front Bioeng Biotechnol; 2022; 10():817736. PubMed ID: 35273956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection.
    Yu WW; White IM
    Analyst; 2013 Feb; 138(4):1020-5. PubMed ID: 23001259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.