BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 29053679)

  • 1. Measuring the Effect of Chemicals on the Growth and Reproduction of Caenorhabditis elegans.
    Lee SY; Kang K
    J Vis Exp; 2017 Oct; (128):. PubMed ID: 29053679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicological evaluation of the topoisomerase inhibitor, etoposide, in the model animal Caenorhabditis elegans and 3T3-L1 normal murine cells.
    Lee SY; Kim JY; Jung YJ; Kang K
    Environ Toxicol; 2017 Jun; 32(6):1836-1843. PubMed ID: 28206703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the Phenotypic and Behavioral Effects of Teratogenic Drugs in Caenorhabditis elegans.
    Marín de Evsikova C
    Methods Mol Biol; 2018; 1797():217-232. PubMed ID: 29896695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay.
    Boyd WA; McBride SJ; Rice JR; Snyder DW; Freedman JH
    Toxicol Appl Pharmacol; 2010 Jun; 245(2):153-9. PubMed ID: 20206647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of the Caenorhabditis elegans growth and reproduction test to assess the ecotoxicity of soils and complex matrices.
    Huguier P; Manier N; Méline C; Bauda P; Pandard P
    Environ Toxicol Chem; 2013 Sep; 32(9):2100-8. PubMed ID: 23703843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental Effects of the ToxCast™ Phase I and Phase II Chemicals in Caenorhabditis elegans and Corresponding Responses in Zebrafish, Rats, and Rabbits.
    Boyd WA; Smith MV; Co CA; Pirone JR; Rice JR; Shockley KR; Freedman JH
    Environ Health Perspect; 2016 May; 124(5):586-93. PubMed ID: 26496690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caenorhabditis elegans as a Model for Toxic Effects of Nanoparticles: Lethality, Growth, and Reproduction.
    Maurer LL; Ryde IT; Yang X; Meyer JN
    Curr Protoc Toxicol; 2015 Nov; 66():20.10.1-20.10.25. PubMed ID: 26523472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental abnormality induced by strong static magnetic field in Caenorhabditis elegans.
    Wang L; Du H; Guo X; Wang X; Wang M; Wang Y; Wang M; Chen S; Wu L; Xu A
    Bioelectromagnetics; 2015 Apr; 36(3):178-89. PubMed ID: 25754967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the toxicity of contaminated soils using the nematode Caenorhabditis elegans as test organism.
    Höss S; Jänsch S; Moser T; Junker T; Römbke J
    Ecotoxicol Environ Saf; 2009 Oct; 72(7):1811-8. PubMed ID: 19665791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medium- and high-throughput screening of neurotoxicants using C. elegans.
    Boyd WA; Smith MV; Kissling GE; Freedman JH
    Neurotoxicol Teratol; 2010; 32(1):68-73. PubMed ID: 19166924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caenorhabditis elegans, a Biological Model for Research in Toxicology.
    Tejeda-Benitez L; Olivero-Verbel J
    Rev Environ Contam Toxicol; 2016; 237():1-35. PubMed ID: 26613986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methylmercury exposure-induced reproductive effects are mediated by dopamine in Caenorhabditis elegans.
    Ke T; Santamaria A; Junior FB; Rocha JBT; Bowman AB; Aschner M
    Neurotoxicol Teratol; 2022; 93():107120. PubMed ID: 35987454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interlaboratory comparison of a standardized toxicity test using the nematode Caenorhabditis elegans (ISO 10872).
    Höss S; Ahlf W; Bergtold M; Bluebaum-Gronau E; Brinke M; Donnevert G; Menzel R; Möhlenkamp C; Ratte HT; Traunspurger W; von Danwitz B; Pluta HJ
    Environ Toxicol Chem; 2012 Jul; 31(7):1525-35. PubMed ID: 22544597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo testing of gold nanoparticles using the Caenorhabditis elegans model organism.
    Gonzalez-Moragas L; Berto P; Vilches C; Quidant R; Kolovou A; Santarella-Mellwig R; Schwab Y; Stürzenbaum S; Roig A; Laromaine A
    Acta Biomater; 2017 Apr; 53():598-609. PubMed ID: 28161575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaches to Anesthetic Mechanisms: The C. elegans Model.
    Steele LM; Sedensky MM
    Methods Enzymol; 2018; 602():133-151. PubMed ID: 29588026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triclosan (TCS) and triclocarban (TCC) induce systemic toxic effects in a model organism the nematode Caenorhabditis elegans.
    Lenz KA; Pattison C; Ma H
    Environ Pollut; 2017 Dec; 231(Pt 1):462-470. PubMed ID: 28837926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Culturing Caenorhabditis elegans in axenic liquid media and creation of transgenic worms by microparticle bombardment.
    Samuel TK; Sinclair JW; Pinter KL; Hamza I
    J Vis Exp; 2014 Aug; (90):e51796. PubMed ID: 25145601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxic effects of di(2-ethylhexyl)phthalate on mortality, growth, reproduction and stress-related gene expression in the soil nematode Caenorhabditis elegans.
    Roh JY; Jung IH; Lee JY; Choi J
    Toxicology; 2007 Jul; 237(1-3):126-133. PubMed ID: 17604895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone methylation-associated transgenerational inheritance of reproductive defects in Caenorhabditis elegans exposed to crude oil under various exposure scenarios.
    Yang J; Chatterjee N; Kim Y; Roh JY; Kwon JH; Park MS; Choi J
    Chemosphere; 2018 Jun; 200():358-365. PubMed ID: 29494917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.