These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 29053957)

  • 1. CDK4 Phosphorylates AMPKα2 to Inhibit Its Activity and Repress Fatty Acid Oxidation.
    Lopez-Mejia IC; Lagarrigue S; Giralt A; Martinez-Carreres L; Zanou N; Denechaud PD; Castillo-Armengol J; Chavey C; Orpinell M; Delacuisine B; Nasrallah A; Collodet C; Zhang L; Viollet B; Hardie DG; Fajas L
    Mol Cell; 2017 Oct; 68(2):336-349.e6. PubMed ID: 29053957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMP-activated protein kinase α2 is an essential signal in the regulation of insulin-stimulated fatty acid uptake in control-fed and high-fat-fed mice.
    Abbott MJ; Constantinescu S; Turcotte LP
    Exp Physiol; 2012 May; 97(5):603-17. PubMed ID: 22308162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CDKN2A/p16INK4a suppresses hepatic fatty acid oxidation through the AMPKα2-SIRT1-PPARα signaling pathway.
    Deleye Y; Cotte AK; Hannou SA; Hennuyer N; Bernard L; Derudas B; Caron S; Legry V; Vallez E; Dorchies E; Martin N; Lancel S; Annicotte JS; Bantubungi K; Pourtier A; Raverdy V; Pattou F; Lefebvre P; Abbadie C; Staels B; Haas JT; Paumelle R
    J Biol Chem; 2020 Dec; 295(50):17310-17322. PubMed ID: 33037071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation.
    Dzamko N; Schertzer JD; Ryall JG; Steel R; Macaulay SL; Wee S; Chen ZP; Michell BJ; Oakhill JS; Watt MJ; Jørgensen SB; Lynch GS; Kemp BE; Steinberg GR
    J Physiol; 2008 Dec; 586(23):5819-31. PubMed ID: 18845612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new leptin-mediated mechanism for stimulating fatty acid oxidation: a pivotal role for sarcolemmal FAT/CD36.
    Momken I; Chabowski A; Dirkx E; Nabben M; Jain SS; McFarlan JT; Glatz JF; Luiken JJ; Bonen A
    Biochem J; 2017 Jan; 474(1):149-162. PubMed ID: 27827305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SUMO-specific protease 2 mediates leptin-induced fatty acid oxidation in skeletal muscle.
    Koo YD; Lee JS; Lee SA; Quaresma PGF; Bhat R; Haynes WG; Park YJ; Kim YB; Chung SS; Park KS
    Metabolism; 2019 Jun; 95():27-35. PubMed ID: 30902749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genistein stimulates fatty acid oxidation in a leptin receptor-independent manner through the JAK2-mediated phosphorylation and activation of AMPK in skeletal muscle.
    Palacios-González B; Zarain-Herzberg A; Flores-Galicia I; Noriega LG; Alemán-Escondrillas G; Zariñan T; Ulloa-Aguirre A; Torres N; Tovar AR
    Biochim Biophys Acta; 2014 Jan; 1841(1):132-40. PubMed ID: 24013029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CTRP1 protein enhances fatty acid oxidation via AMP-activated protein kinase (AMPK) activation and acetyl-CoA carboxylase (ACC) inhibition.
    Peterson JM; Aja S; Wei Z; Wong GW
    J Biol Chem; 2012 Jan; 287(2):1576-87. PubMed ID: 22086915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise-induced GLUT4 transcription via inactivation of HDAC4/5 in mouse skeletal muscle in an AMPKα2-dependent manner.
    Niu Y; Wang T; Liu S; Yuan H; Li H; Fu L
    Biochim Biophys Acta Mol Basis Dis; 2017 Sep; 1863(9):2372-2381. PubMed ID: 28688716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Narciclasine attenuates diet-induced obesity by promoting oxidative metabolism in skeletal muscle.
    Julien SG; Kim SY; Brunmeir R; Sinnakannu JR; Ge X; Li H; Ma W; Yaligar J; Kn BP; Velan SS; Röder PV; Zhang Q; Sim CK; Wu J; Garcia-Miralles M; Pouladi MA; Xie W; McFarlane C; Han W; Xu F
    PLoS Biol; 2017 Feb; 15(2):e1002597. PubMed ID: 28207742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 5'-AMP activated protein kinase α2 controls substrate metabolism during post-exercise recovery via regulation of pyruvate dehydrogenase kinase 4.
    Fritzen AM; Lundsgaard AM; Jeppesen J; Christiansen ML; Biensø R; Dyck JR; Pilegaard H; Kiens B
    J Physiol; 2015 Nov; 593(21):4765-80. PubMed ID: 26359931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole body deletion of AMP-activated protein kinase {beta}2 reduces muscle AMPK activity and exercise capacity.
    Steinberg GR; O'Neill HM; Dzamko NL; Galic S; Naim T; Koopman R; Jørgensen SB; Honeyman J; Hewitt K; Chen ZP; Schertzer JD; Scott JW; Koentgen F; Lynch GS; Watt MJ; van Denderen BJ; Campbell DJ; Kemp BE
    J Biol Chem; 2010 Nov; 285(48):37198-209. PubMed ID: 20855892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha2-AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise.
    Miura S; Kai Y; Kamei Y; Bruce CR; Kubota N; Febbraio MA; Kadowaki T; Ezaki O
    Am J Physiol Endocrinol Metab; 2009 Jan; 296(1):E47-55. PubMed ID: 18940938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AMP-activated protein kinase α2 and E2F1 transcription factor mediate doxorubicin-induced cytotoxicity by forming a positive signal loop in mouse embryonic fibroblasts and non-carcinoma cells.
    Yang W; Park IJ; Yun H; Im DU; Ock S; Kim J; Seo SM; Shin HY; Viollet B; Kang I; Choe W; Kim SS; Ha J
    J Biol Chem; 2014 Feb; 289(8):4839-52. PubMed ID: 24398673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducible deletion of skeletal muscle AMPKα reveals that AMPK is required for nucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise.
    Hingst JR; Kjøbsted R; Birk JB; Jørgensen NO; Larsen MR; Kido K; Larsen JK; Kjeldsen SAS; Fentz J; Frøsig C; Holm S; Fritzen AM; Dohlmann TL; Larsen S; Foretz M; Viollet B; Schjerling P; Overby P; Halling JF; Pilegaard H; Hellsten Y; Wojtaszewski JFP
    Mol Metab; 2020 Oct; 40():101028. PubMed ID: 32504885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the α2 subunit of AMP-activated protein kinase and its nuclear localization in mitochondria and energy metabolism-related gene expressions in C2C12 cells.
    Okamoto S; Asgar NF; Yokota S; Saito K; Minokoshi Y
    Metabolism; 2019 Jan; 90():52-68. PubMed ID: 30359677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target.
    Muoio DM; Seefeld K; Witters LA; Coleman RA
    Biochem J; 1999 Mar; 338 ( Pt 3)(Pt 3):783-91. PubMed ID: 10051453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation.
    McFarlan JT; Yoshida Y; Jain SS; Han XX; Snook LA; Lally J; Smith BK; Glatz JF; Luiken JJ; Sayer RA; Tupling AR; Chabowski A; Holloway GP; Bonen A
    J Biol Chem; 2012 Jul; 287(28):23502-16. PubMed ID: 22584574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AMPK-dependent inhibitory phosphorylation of ACC is not essential for maintaining myocardial fatty acid oxidation.
    Zordoky BN; Nagendran J; Pulinilkunnil T; Kienesberger PC; Masson G; Waller TJ; Kemp BE; Steinberg GR; Dyck JR
    Circ Res; 2014 Aug; 115(5):518-24. PubMed ID: 25001074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SIRT6 regulates metabolic homeostasis in skeletal muscle through activation of AMPK.
    Cui X; Yao L; Yang X; Gao Y; Fang F; Zhang J; Wang Q; Chang Y
    Am J Physiol Endocrinol Metab; 2017 Oct; 313(4):E493-E505. PubMed ID: 28765271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.