These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 29053957)

  • 21. LKB1 and AMPK and the regulation of skeletal muscle metabolism.
    Koh HJ; Brandauer J; Goodyear LJ
    Curr Opin Clin Nutr Metab Care; 2008 May; 11(3):227-32. PubMed ID: 18403917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase.
    Matthews VB; Aström MB; Chan MH; Bruce CR; Krabbe KS; Prelovsek O; Akerström T; Yfanti C; Broholm C; Mortensen OH; Penkowa M; Hojman P; Zankari A; Watt MJ; Bruunsgaard H; Pedersen BK; Febbraio MA
    Diabetologia; 2009 Jul; 52(7):1409-18. PubMed ID: 19387610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autoantibody against β
    Xu W; Wu Y; Wang L; Bai Y; Du Y; Li Y; Cao N; Zhao Y; Zhang Y; Liu H
    Cell Death Dis; 2019 Feb; 10(3):158. PubMed ID: 30770790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PKD1 Inhibits AMPKα2 through Phosphorylation of Serine 491 and Impairs Insulin Signaling in Skeletal Muscle Cells.
    Coughlan KA; Valentine RJ; Sudit BS; Allen K; Dagon Y; Kahn BB; Ruderman NB; Saha AK
    J Biol Chem; 2016 Mar; 291(11):5664-5675. PubMed ID: 26797128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AMPK-α2 is involved in exercise training-induced adaptations in insulin-stimulated metabolism in skeletal muscle following high-fat diet.
    Abbott MJ; Turcotte LP
    J Appl Physiol (1985); 2014 Oct; 117(8):869-79. PubMed ID: 25103967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic impairment of AMPKalpha2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice.
    Maarbjerg SJ; Jørgensen SB; Rose AJ; Jeppesen J; Jensen TE; Treebak JT; Birk JB; Schjerling P; Wojtaszewski JF; Richter EA
    Am J Physiol Endocrinol Metab; 2009 Oct; 297(4):E924-34. PubMed ID: 19654283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Marked phenotypic differences of endurance performance and exercise-induced oxygen consumption between AMPK and LKB1 deficiency in mouse skeletal muscle: changes occurring in the diaphragm.
    Miura S; Kai Y; Tadaishi M; Tokutake Y; Sakamoto K; Bruce CR; Febbraio MA; Kita K; Chohnan S; Ezaki O
    Am J Physiol Endocrinol Metab; 2013 Jul; 305(2):E213-29. PubMed ID: 23695215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. AMP-activated protein kinase (AMPK) α2 subunit mediates glycolysis in postmortem skeletal muscle.
    Liang J; Yang Q; Zhu MJ; Jin Y; Du M
    Meat Sci; 2013 Nov; 95(3):536-41. PubMed ID: 23793092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of feed deprivation on the AMPK signaling pathway in skeletal muscle of broiler chickens.
    Hu X; Liu L; Song Z; Sheikhahmadi A; Wang Y; Buyse J
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Jan; 191():146-54. PubMed ID: 26497445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Elevated fatty acid β-oxidation by leptin contributes to the proinflammatory characteristics of fibroblast-like synoviocytes from RA patients via LKB1-AMPK pathway.
    Wei J; Huang X; Zhang X; Chen G; Zhang C; Zhou X; Qi J; Zhang Y; Li X
    Cell Death Dis; 2023 Feb; 14(2):97. PubMed ID: 36759597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy.
    Liu X; Niu Y; Yuan H; Huang J; Fu L
    Metabolism; 2015 Jun; 64(6):658-65. PubMed ID: 25672217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo.
    Lee-Young RS; Griffee SR; Lynes SE; Bracy DP; Ayala JE; McGuinness OP; Wasserman DH
    J Biol Chem; 2009 Sep; 284(36):23925-34. PubMed ID: 19525228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlling skeletal muscle CPT-I malonyl-CoA sensitivity: the importance of AMPK-independent regulation of intermediate filaments during exercise.
    Miotto PM; Steinberg GR; Holloway GP
    Biochem J; 2017 Feb; 474(4):557-569. PubMed ID: 27941154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AMPK regulates immature boar Sertoli cell proliferation through affecting CDK4/Cyclin D3 pathway and mitochondrial function.
    Zhang WY; Xue MQ; Tang Y; Wang T; Wang XZ; Zhang JJ
    Theriogenology; 2024 Aug; 224():9-18. PubMed ID: 38714024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of AMPKα2 is not crucial for mitochondrial uncoupling-induced metabolic effects but required to maintain skeletal muscle integrity.
    Ost M; Werner F; Dokas J; Klaus S; Voigt A
    PLoS One; 2014; 9(4):e94689. PubMed ID: 24732703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rho-kinase inhibition ameliorates metabolic disorders through activation of AMPK pathway in mice.
    Noda K; Nakajima S; Godo S; Saito H; Ikeda S; Shimizu T; Enkhjargal B; Fukumoto Y; Tsukita S; Yamada T; Katagiri H; Shimokawa H
    PLoS One; 2014; 9(11):e110446. PubMed ID: 25365359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LKB1 regulates lipid oxidation during exercise independently of AMPK.
    Jeppesen J; Maarbjerg SJ; Jordy AB; Fritzen AM; Pehmøller C; Sylow L; Serup AK; Jessen N; Thorsen K; Prats C; Qvortrup K; Dyck JR; Hunter RW; Sakamoto K; Thomson DM; Schjerling P; Wojtaszewski JF; Richter EA; Kiens B
    Diabetes; 2013 May; 62(5):1490-9. PubMed ID: 23349504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Absence of AMPKα2 accelerates cellular senescence via p16 induction in mouse embryonic fibroblasts.
    Ding Y; Chen J; Okon IS; Zou MH; Song P
    Int J Biochem Cell Biol; 2016 Feb; 71():72-80. PubMed ID: 26718972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Obesity impairs skeletal muscle AMPK signaling during exercise: role of AMPKα2 in the regulation of exercise capacity in vivo.
    Lee-Young RS; Ayala JE; Fueger PT; Mayes WH; Kang L; Wasserman DH
    Int J Obes (Lond); 2011 Jul; 35(7):982-9. PubMed ID: 21079619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase.
    Minokoshi Y; Kim YB; Peroni OD; Fryer LG; Müller C; Carling D; Kahn BB
    Nature; 2002 Jan; 415(6869):339-43. PubMed ID: 11797013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.