These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29054258)

  • 1. Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm.
    Maniruzzaman M; Kumar N; Menhazul Abedin M; Shaykhul Islam M; Suri HS; El-Baz AS; Suri JS
    Comput Methods Programs Biomed; 2017 Dec; 152():23-34. PubMed ID: 29054258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Diabetes Risk Stratification Using Machine Learning: Role of Missing Value and Outliers.
    Maniruzzaman M; Rahman MJ; Al-MehediHasan M; Suri HS; Abedin MM; El-Baz A; Suri JS
    J Med Syst; 2018 Apr; 42(5):92. PubMed ID: 29637403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms.
    Maniruzzaman M; Jahanur Rahman M; Ahammed B; Abedin MM; Suri HS; Biswas M; El-Baz A; Bangeas P; Tsoulfas G; Suri JS
    Comput Methods Programs Biomed; 2019 Jul; 176():173-193. PubMed ID: 31200905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Analysis of Classification Methods with PCA and LDA for Diabetes.
    Choubey DK; Kumar M; Shukla V; Tripathi S; Dhandhania VK
    Curr Diabetes Rev; 2020; 16(8):833-850. PubMed ID: 31971112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaussian process-based kernel as a diagnostic model for prediction of type 2 diabetes mellitus risk using non-linear heart rate variability features.
    Shashikant R; Chaskar U; Phadke L; Patil C
    Biomed Eng Lett; 2021 Aug; 11(3):273-286. PubMed ID: 34350053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning for the Prediction of New-Onset Diabetes Mellitus during 5-Year Follow-up in Non-Diabetic Patients with Cardiovascular Risks.
    Choi BG; Rha SW; Kim SW; Kang JH; Park JY; Noh YK
    Yonsei Med J; 2019 Feb; 60(2):191-199. PubMed ID: 30666841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diabetes disease detection and classification on Indian demographic and health survey data using machine learning methods.
    Thotad PN; Bharamagoudar GR; Anami BS
    Diabetes Metab Syndr; 2023 Jan; 17(1):102690. PubMed ID: 36527769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A soft computing approach for diabetes disease classification.
    Nilashi M; Bin Ibrahim O; Mardani A; Ahani A; Jusoh A
    Health Informatics J; 2018 Dec; 24(4):379-393. PubMed ID: 30376769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prostate cancer detection using machine learning techniques by employing combination of features extracting strategies.
    Hussain L; Ahmed A; Saeed S; Rathore S; Awan IA; Shah SA; Majid A; Idris A; Awan AA
    Cancer Biomark; 2018 Feb; 21(2):393-413. PubMed ID: 29226857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of delayed graft function after kidney transplantation: comparison between logistic regression and machine learning methods.
    Decruyenaere A; Decruyenaere P; Peeters P; Vermassen F; Dhaene T; Couckuyt I
    BMC Med Inform Decis Mak; 2015 Oct; 15():83. PubMed ID: 26466993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid artificial fish particle swarm optimizer and kernel extreme learning machine for type-II diabetes predictive model.
    Kanimozhi N; Singaravel G
    Med Biol Eng Comput; 2021 Apr; 59(4):841-867. PubMed ID: 33738640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex estimation: a comparison of techniques based on binary logistic, probit and cumulative probit regression, linear and quadratic discriminant analysis, neural networks, and naïve Bayes classification using ordinal variables.
    Nikita E; Nikitas P
    Int J Legal Med; 2020 May; 134(3):1213-1225. PubMed ID: 31444553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the Mann-Whitney statistical test for feature selection: an approach in breast cancer diagnosis on mammography.
    Pérez NP; Guevara López MA; Silva A; Ramos I
    Artif Intell Med; 2015 Jan; 63(1):19-31. PubMed ID: 25555756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of machine learning and traditional classifiers in glaucoma diagnosis.
    Chan K; Lee TW; Sample PA; Goldbaum MH; Weinreb RN; Sejnowski TJ
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):963-74. PubMed ID: 12214886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of finite sample size on feature selection and classification: a simulation study.
    Way TW; Sahiner B; Hadjiiski LM; Chan HP
    Med Phys; 2010 Feb; 37(2):907-20. PubMed ID: 20229900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiovascular disease incidence prediction by machine learning and statistical techniques: a 16-year cohort study from eastern Mediterranean region.
    Mehrabani-Zeinabad K; Feizi A; Sadeghi M; Roohafza H; Talaei M; Sarrafzadegan N
    BMC Med Inform Decis Mak; 2023 Apr; 23(1):72. PubMed ID: 37076833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Classification of Sarcopenia Level in Older Adults: A Case Study at Tijuana General Hospital.
    Castillo-Olea C; García-Zapirain Soto B; Carballo Lozano C; Zuñiga C
    Int J Environ Res Public Health; 2019 Sep; 16(18):. PubMed ID: 31489909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of the supervised learning algorithms in sex estimation of the proximal femur: A comparative study in contemporary Egyptian and Turkish samples.
    H Attia M; H Attia M; Tarek Farghaly Y; Ahmed El-Sayed Abulnoor B; Curate F
    Sci Justice; 2022 May; 62(3):288-309. PubMed ID: 35598923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated detection and classification of diabetes disease based on Bangladesh demographic and health survey data, 2011 using machine learning approach.
    Islam MM; Rahman MJ; Chandra Roy D; Maniruzzaman M
    Diabetes Metab Syndr; 2020; 14(3):217-219. PubMed ID: 32193086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.