BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 29054852)

  • 41. Human alkyladenine DNA glycosylase uses acid-base catalysis for selective excision of damaged purines.
    O'Brien PJ; Ellenberger T
    Biochemistry; 2003 Oct; 42(42):12418-29. PubMed ID: 14567703
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly mutagenic exocyclic DNA adducts are substrates for the human nucleotide incision repair pathway.
    Prorok P; Saint-Pierre C; Gasparutto D; Fedorova OS; Ishchenko AA; Leh H; Buckle M; Tudek B; Saparbaev M
    PLoS One; 2012; 7(12):e51776. PubMed ID: 23251620
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A model for 3-methyladenine recognition by 3-methyladenine DNA glycosylase I (TAG) from Staphylococcus aureus.
    Zhu X; Yan X; Carter LG; Liu H; Graham S; Coote PJ; Naismith J
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Jun; 68(Pt 6):610-5. PubMed ID: 22684054
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Target search and recognition mechanisms of glycosylase AlkD revealed by scanning FRET-FCS and Markov state models.
    Peng S; Wang X; Zhang L; He S; Zhao XS; Huang X; Chen C
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21889-21895. PubMed ID: 32820079
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Standard role for a conserved aspartate or more direct involvement in deglycosylation? An ONIOM and MD investigation of adenine-DNA glycosylase.
    Kellie JL; Wilson KA; Wetmore SD
    Biochemistry; 2013 Dec; 52(48):8753-65. PubMed ID: 24168684
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chloroethylnitrosourea-derived ethano cytosine and adenine adducts are substrates for Escherichia coli glycosylases excising analogous etheno adducts.
    Guliaev AB; Singer B; Hang B
    DNA Repair (Amst); 2004 Oct; 3(10):1311-21. PubMed ID: 15336626
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Substrate binding pocket residues of human alkyladenine-DNA glycosylase critical for methylating agent survival.
    Chen CY; Guo HH; Shah D; Blank A; Samson LD; Loeb LA
    DNA Repair (Amst); 2008 Oct; 7(10):1731-45. PubMed ID: 18706524
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interplay between base excision repair activity and toxicity of 3-methyladenine DNA glycosylases in an E. coli complementation system.
    Troll CJ; Adhikary S; Cueff M; Mitra I; Eichman BF; Camps M
    Mutat Res; 2014; 763-764():64-73. PubMed ID: 24709477
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mammalian enzymatic repair of etheno and para-benzoquinone exocyclic adducts derived from the carcinogens vinyl chloride and benzene.
    Singer B; Hang B
    IARC Sci Publ; 1999; (150):233-47. PubMed ID: 10626224
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DNA Deformation Exerted by Regulatory DNA-Binding Motifs in Human Alkyladenine DNA Glycosylase Promotes Base Flipping.
    Wang L; Xi K; Zhu L; Da LT
    J Chem Inf Model; 2022 Jul; 62(13):3213-3226. PubMed ID: 35708296
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transient Kinetic Methods for Mechanistic Characterization of DNA Binding and Nucleotide Flipping.
    Hendershot JM; O'Brien PJ
    Methods Enzymol; 2017; 592():377-415. PubMed ID: 28668128
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Escherichia coli single-stranded DNA binding protein SSB promotes AlkB-mediated DNA dealkylation repair.
    Nigam R; Anindya R
    Biochem Biophys Res Commun; 2018 Feb; 496(2):274-279. PubMed ID: 29326044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase.
    Adhikary S; Eichman BF
    EMBO Rep; 2011 Dec; 12(12):1286-92. PubMed ID: 21960007
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of base excision repair in the repair of DNA adducts formed by a series of nitrogen mustard-containing analogues of distamycin of increasing binding site size.
    Brooks N; McHugh PJ; Lee M; Hartley JA
    Anticancer Drug Des; 1999 Feb; 14(1):11-8. PubMed ID: 10363024
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB.
    Yu B; Hunt JF
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14315-20. PubMed ID: 19706517
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recognition of DNA adducts by edited and unedited forms of DNA glycosylase NEIL1.
    Minko IG; Vartanian VL; Tozaki NN; Coskun E; Coskun SH; Jaruga P; Yeo J; David SS; Stone MP; Egli M; Dizdaroglu M; McCullough AK; Lloyd RS
    DNA Repair (Amst); 2020 Jan; 85():102741. PubMed ID: 31733589
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetic mechanism for the excision of hypoxanthine by Escherichia coli AlkA and evidence for binding to DNA ends.
    Zhao B; O'Brien PJ
    Biochemistry; 2011 May; 50(20):4350-9. PubMed ID: 21491902
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase.
    Lee S; Verdine GL
    Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18497-502. PubMed ID: 19841264
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome and cancer single nucleotide polymorphisms of the human NEIL1 DNA glycosylase: activity, structure, and the effect of editing.
    Prakash A; Carroll BL; Sweasy JB; Wallace SS; Doublié S
    DNA Repair (Amst); 2014 Feb; 14():17-26. PubMed ID: 24382305
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Non-flipping DNA glycosylase AlkD scans DNA without formation of a stable interrogation complex.
    Ahmadi A; Till K; Backe PH; Blicher P; Diekmann R; Schüttpelz M; Glette K; Tørresen J; Bjørås M; Rowe AD; Dalhus B
    Commun Biol; 2021 Jul; 4(1):876. PubMed ID: 34267321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.