BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29055027)

  • 21. The Dynamics of Radio-Cesium in Soils and Mechanism of Cesium Uptake Into Higher Plants: Newly Elucidated Mechanism of Cesium Uptake Into Rice Plants.
    Rai H; Kawabata M
    Front Plant Sci; 2020; 11():528. PubMed ID: 32477382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations.
    Rubio F; Nieves-Cordones M; Alemán F; Martínez V
    Physiol Plant; 2008 Dec; 134(4):598-608. PubMed ID: 19000196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-affinity Na+ uptake in the halophyte Suaeda maritima.
    Wang SM; Zhang JL; Flowers TJ
    Plant Physiol; 2007 Oct; 145(2):559-71. PubMed ID: 17766398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5.
    Nieves-Cordones M; Miller AJ; Alemán F; Martínez V; Rubio F
    Plant Mol Biol; 2008 Dec; 68(6):521-32. PubMed ID: 18726559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterologous expression of the yeast HAL5 gene in tomato enhances salt tolerance by reducing shoot Na+ accumulation in the long term.
    García-Abellan JO; Egea I; Pineda B; Sanchez-Bel P; Belver A; Garcia-Sogo B; Flores FB; Atares A; Moreno V; Bolarin MC
    Physiol Plant; 2014 Dec; 152(4):700-13. PubMed ID: 24773242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rice OsHAK5 is a major potassium transporter that functions in potassium uptake with high specificity but contributes less to cesium uptake.
    Uchiyama M; Fudaki R; Kobayashi T; Adachi Y; Ukai Y; Yoshihara T; Shimada H
    Biosci Biotechnol Biochem; 2022 Oct; 86(11):1599-1604. PubMed ID: 36085524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stable cesium (
    Rinaldi F; Komínková D; Berchová K; Daguenet J; Pecharová E
    Ecotoxicol Environ Saf; 2017 May; 139():301-307. PubMed ID: 28167442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Response of Plantago major to cesium and strontium in hydroponics: Absorption and effects on morphology, physiology and photosynthesis.
    Burger A; Weidinger M; Adlassnig W; Puschenreiter M; Lichtscheidl I
    Environ Pollut; 2019 Nov; 254(Pt B):113084. PubMed ID: 31473385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity.
    Kanai S; Moghaieb RE; El-Shemy HA; Panigrahi R; Mohapatra PK; Ito J; Nguyen NT; Saneoka H; Fujita K
    Plant Sci; 2011 Feb; 180(2):368-74. PubMed ID: 21421382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots.
    Gierth M; Mäser P; Schroeder JI
    Plant Physiol; 2005 Mar; 137(3):1105-14. PubMed ID: 15734909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes.
    Hartje S; Zimmermann S; Klonus D; Mueller-Roeber B
    Planta; 2000 Apr; 210(5):723-31. PubMed ID: 10805443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short day length-induced decrease of cesium uptake without altering potassium uptake manner in poplar.
    Noda Y; Furukawa J; Aohara T; Nihei N; Hirose A; Tanoi K; Nakanishi TM; Satoh S
    Sci Rep; 2016 Dec; 6():38360. PubMed ID: 27924824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences in shoot Na+ accumulation between two tomato species are due to differences in ion affinity of HKT1;2.
    Almeida P; de Boer GJ; de Boer AH
    J Plant Physiol; 2014 Mar; 171(6):438-47. PubMed ID: 24594396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A highly active ATP-insensitive K+ import pathway in plant mitochondria.
    Ruy F; Vercesi AE; Andrade PB; Bianconi ML; Chaimovich H; Kowaltowski AJ
    J Bioenerg Biomembr; 2004 Apr; 36(2):195-202. PubMed ID: 15224969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper.
    Martínez-Cordero MA; Martínez V; Rubio F
    Plant Mol Biol; 2004 Oct; 56(3):413-21. PubMed ID: 15604753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of dark septate endophytic fungal isolates in the accumulation of cesium by chinese cabbage and tomato plants under contaminated environments.
    Diene O; Sakagami N; Narisawa K
    PLoS One; 2014; 9(10):e109233. PubMed ID: 25296037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Internal Cs
    Mohamed S; Sentenac H; Guiderdoni E; Véry AA; Nieves-Cordones M
    Plant Signal Behav; 2018 Feb; 13(2):e1428516. PubMed ID: 29336672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The K+/H+ antiporter LeNHX2 increases salt tolerance by improving K+ homeostasis in transgenic tomato.
    Huertas R; Rubio L; Cagnac O; García-Sánchez MJ; Alché Jde D; Venema K; Fernández JA; Rodríguez-Rosales MP
    Plant Cell Environ; 2013 Dec; 36(12):2135-49. PubMed ID: 23550888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sulphur deprivation limits Fe-deficiency responses in tomato plants.
    Zuchi S; Cesco S; Varanini Z; Pinton R; Astolfi S
    Planta; 2009 Jun; 230(1):85-94. PubMed ID: 19350269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms and physiological roles of K+ efflux from root cells.
    Demidchik V
    J Plant Physiol; 2014 May; 171(9):696-707. PubMed ID: 24685330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.