These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 29055184)

  • 1. Predict protein structural class by incorporating two different modes of evolutionary information into Chou's general pseudo amino acid composition.
    Liang Y; Zhang S
    J Mol Graph Model; 2017 Nov; 78():110-117. PubMed ID: 29055184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of protein structural class for low-similarity sequences using Chou's pseudo amino acid composition and wavelet denoising.
    Yu B; Lou L; Li S; Zhang Y; Qiu W; Wu X; Wang M; Tian B
    J Mol Graph Model; 2017 Sep; 76():260-273. PubMed ID: 28743071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou's pseudo amino acid composition.
    Kong L; Zhang L; Lv J
    J Theor Biol; 2014 Mar; 344():12-8. PubMed ID: 24316044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-layer wavelet SVM for predicting protein structural class via the general form of Chou's pseudo amino acid composition.
    Chen C; Shen ZB; Zou XY
    Protein Pept Lett; 2012 Apr; 19(4):422-9. PubMed ID: 22185506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of protein subcellular localization with oversampling approach and Chou's general PseAAC.
    Zhang S; Duan X
    J Theor Biol; 2018 Jan; 437():239-250. PubMed ID: 29100918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predict protein structural class for low-similarity sequences by evolutionary difference information into the general form of Chou's pseudo amino acid composition.
    Zhang L; Zhao X; Kong L
    J Theor Biol; 2014 Aug; 355():105-10. PubMed ID: 24735902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating secondary features into the general form of Chou's PseAAC for predicting protein structural class.
    Liao B; Xiang Q; Li D
    Protein Pept Lett; 2012 Nov; 19(11):1133-8. PubMed ID: 22185510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou's pseudo-amino acid composition.
    Qiu W; Li S; Cui X; Yu Z; Wang M; Du J; Peng Y; Yu B
    J Theor Biol; 2018 Aug; 450():86-103. PubMed ID: 29678694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of protein structural classes by Chou's pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis.
    Li ZC; Zhou XB; Dai Z; Zou XY
    Amino Acids; 2009 Jul; 37(2):415-25. PubMed ID: 18726140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discriminating protein structure classes by incorporating Pseudo Average Chemical Shift to Chou's general PseAAC and Support Vector Machine.
    Hayat M; Iqbal N
    Comput Methods Programs Biomed; 2014 Oct; 116(3):184-92. PubMed ID: 24997484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A protein structural classes prediction method based on predicted secondary structure and PSI-BLAST profile.
    Ding S; Li Y; Shi Z; Yan S
    Biochimie; 2014 Feb; 97():60-5. PubMed ID: 24067326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting protein structural class by incorporating patterns of over-represented k-mers into the general form of Chou's PseAAC.
    Qin YF; Wang CH; Yu XQ; Zhu J; Liu TG; Zheng XQ
    Protein Pept Lett; 2012 Apr; 19(4):388-97. PubMed ID: 22316305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel feature representation method based on Chou's pseudo amino acid composition for protein structural class prediction.
    Sahu SS; Panda G
    Comput Biol Chem; 2010 Dec; 34(5-6):320-7. PubMed ID: 21106461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Protein Structural Classes for Low-Similarity Sequences Based on Consensus Sequence and Segmented PSSM.
    Liang Y; Liu S; Zhang S
    Comput Math Methods Med; 2015; 2015():370756. PubMed ID: 26788119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of protein structure classes by incorporating different protein descriptors into general Chou's pseudo amino acid composition.
    Nanni L; Brahnam S; Lumini A
    J Theor Biol; 2014 Nov; 360():109-116. PubMed ID: 25026218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DPP-PseAAC: A DNA-binding protein prediction model using Chou's general PseAAC.
    Rahman MS; Shatabda S; Saha S; Kaykobad M; Rahman MS
    J Theor Biol; 2018 Sep; 452():22-34. PubMed ID: 29753757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Protein Subcellular Localization Based on Fusion of Multi-view Features.
    Li B; Cai L; Liao B; Fu X; Bing P; Yang J
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30845684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate prediction of subcellular location of apoptosis proteins combining Chou's PseAAC and PsePSSM based on wavelet denoising.
    Yu B; Li S; Qiu WY; Chen C; Chen RX; Wang L; Wang MH; Zhang Y
    Oncotarget; 2017 Dec; 8(64):107640-107665. PubMed ID: 29296195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supersecondary structure prediction using Chou's pseudo amino acid composition.
    Zou D; He Z; He J; Xia Y
    J Comput Chem; 2011 Jan; 32(2):271-8. PubMed ID: 20652881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Golgi-resident protein types using general form of Chou's pseudo-amino acid compositions: Approaches with minimal redundancy maximal relevance feature selection.
    Jiao YS; Du PF
    J Theor Biol; 2016 Aug; 402():38-44. PubMed ID: 27155042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.