These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29055244)

  • 81. Inverse tissue mechanics of cell monolayer expansion.
    Kondo Y; Aoki K; Ishii S
    PLoS Comput Biol; 2018 Mar; 14(3):e1006029. PubMed ID: 29494578
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Mechanical quality of tissue engineered cartilage: results after 6 and 12 weeks in vivo.
    Duda GN; Haisch A; Endres M; Gebert C; Schroeder D; Hoffmann JE; Sittinger M
    J Biomed Mater Res; 2000; 53(6):673-7. PubMed ID: 11074426
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Contribution of perichondrium to the mechanical properties of auricular cartilage.
    Sun H; Zhou J; Wang Q; Jiang H; Yang Q
    J Biomech; 2021 Sep; 126():110638. PubMed ID: 34314997
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Compression, shear and bending on tissue-engineered cartilage: a numerical study.
    Bandeiras C; Completo A; Ramos A
    Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():2-3. PubMed ID: 25074135
    [No Abstract]   [Full Text] [Related]  

  • 85. Engineering cartilage growth and development.
    Kaufman MR; Tobias GW
    Clin Plast Surg; 2003 Oct; 30(4):539-46. PubMed ID: 14621301
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A poroviscohyperelastic model for numerical analysis of mechanical behavior of single chondrocyte.
    Nguyen TD; Oloyede A; Gu Y
    Comput Methods Biomech Biomed Engin; 2016; 19(2):126-36. PubMed ID: 25588670
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Zone-specific micromechanical properties of the extracellular matrices of growth plate cartilage.
    Radhakrishnan P; Lewis NT; Mao JJ
    Ann Biomed Eng; 2004 Feb; 32(2):284-91. PubMed ID: 15008376
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Characterization of resilin-based materials for tissue engineering applications.
    Renner JN; Cherry KM; Su RS; Liu JC
    Biomacromolecules; 2012 Nov; 13(11):3678-85. PubMed ID: 23057410
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Comparative equilibrium mechanical properties of bovine and lamprey cartilaginous tissues.
    Courtland HW; Wright GM; Root RG; DeMont ME
    J Exp Biol; 2003 Apr; 206(Pt 8):1397-408. PubMed ID: 12624174
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Mechanical analysis of cartilage graft reinforced with PDS plate.
    Conderman C; Kinzinger M; Manuel C; Protsenko D; Wong BJ
    Laryngoscope; 2013 Feb; 123(2):339-43. PubMed ID: 22965809
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Mechanical testing of fixation techniques for scaffold-based tissue-engineered grafts.
    Kili S
    J Biomed Mater Res B Appl Biomater; 2008 Jan; 84(1):298; author reply 298-9. PubMed ID: 17910047
    [No Abstract]   [Full Text] [Related]  

  • 92. A high throughput mechanical screening device for cartilage tissue engineering.
    Mohanraj B; Hou C; Meloni GR; Cosgrove BD; Dodge GR; Mauck RL
    J Biomech; 2014 Jun; 47(9):2130-6. PubMed ID: 24275442
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Bevacizumab-Laden Nanofibers Simulating an Antiangiogenic Niche to Improve the Submuscular Stability of Stem Cell Engineered Cartilage.
    Zhu X; Xu Y; Xu X; Zhu J; Chen L; Xu Y; Yang Y; Song N
    Small; 2022 Jun; 18(23):e2201874. PubMed ID: 35557029
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Poroelasticity of cartilage at the nanoscale.
    Nia HT; Han L; Li Y; Ortiz C; Grodzinsky A
    Biophys J; 2011 Nov; 101(9):2304-13. PubMed ID: 22067171
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A Novel Toolkit for Characterizing the Mechanical and Electrical Properties of Engineered Neural Tissues.
    Robinson M; Valente KP; Willerth SM
    Biosensors (Basel); 2019 Apr; 9(2):. PubMed ID: 30939804
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Toward the realization of reproducible Atomic Force Microscopy measurements of elastic modulus in biological samples.
    Demichelis A; Divieto C; Mortati L; Pavarelli S; Sassi G; Sassi MP
    J Biomech; 2015 Apr; 48(6):1099-104. PubMed ID: 25661874
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Time-dependent nanomechanics of cartilage.
    Han L; Frank EH; Greene JJ; Lee HY; Hung HH; Grodzinsky AJ; Ortiz C
    Biophys J; 2011 Apr; 100(7):1846-54. PubMed ID: 21463599
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Characterizing the non-linear mechanical behavior of native and biomimetic engineered tissues in 1D with physically meaningful parameters.
    Robbins AB; Freed AD; Moreno MR
    J Mech Behav Biomed Mater; 2020 Feb; 102():103509. PubMed ID: 31877517
    [TBL] [Abstract][Full Text] [Related]  

  • 99. An AFM-Based Nanomechanical Study of Ovarian Tissues with Pathological Conditions.
    Ansardamavandi A; Tafazzoli-Shadpour M; Omidvar R; Nili F
    Int J Nanomedicine; 2020; 15():4333-4350. PubMed ID: 32606681
    [TBL] [Abstract][Full Text] [Related]  

  • 100. An Economic, Modular, and Portable Skin Viscoelasticity Measurement Device for
    Park S; Tao J; Sun L; Fan CM; Chen Y
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30841558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.