These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29055300)

  • 1. Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu.
    Zhang XJ; Shang C; Liu ZP
    J Chem Phys; 2017 Oct; 147(15):152706. PubMed ID: 29055300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction sampling and reactivity prediction using the stochastic surface walking method.
    Zhang XJ; Liu ZP
    Phys Chem Chem Phys; 2015 Jan; 17(4):2757-69. PubMed ID: 25503262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic surface walking method for crystal structure and phase transition pathway prediction.
    Shang C; Zhang XJ; Liu ZP
    Phys Chem Chem Phys; 2014 Sep; 16(33):17845-56. PubMed ID: 25045763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Atoms to Fullerene: Stochastic Surface Walking Solution for Automated Structure Prediction of Complex Material.
    Zhang XJ; Shang C; Liu ZP
    J Chem Theory Comput; 2013 Jul; 9(7):3252-60. PubMed ID: 26584000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The activation of gold and the water-gas shift reaction: insights from studies with model catalysts.
    Rodriguez JA; Senanayake SD; Stacchiola D; Liu P; Hrbek J
    Acc Chem Res; 2014 Mar; 47(3):773-82. PubMed ID: 24191672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of H2 on the gas-phase decomposition of formic acid: a theoretical study.
    Hu SW; Wang XY; Chu TW; Liu XQ
    J Phys Chem A; 2005 Oct; 109(40):9129-40. PubMed ID: 16332022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study on the mechanism of aqueous synthesis of formic acid catalyzed by [Ru3+]-EDTA complex.
    Chen ZN; Chan KY; Pulleri JK; Kong J; Hu H
    Inorg Chem; 2015 Feb; 54(4):1314-24. PubMed ID: 25646570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Material discovery by combining stochastic surface walking global optimization with a neural network.
    Huang SD; Shang C; Zhang XJ; Liu ZP
    Chem Sci; 2017 Sep; 8(9):6327-6337. PubMed ID: 29308174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting Formic Acid Decomposition by a Graph-Theoretical Approach.
    Ida T; Nishida M; Hori Y
    J Phys Chem A; 2019 Nov; 123(44):9579-9586. PubMed ID: 31625743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction prediction via atomistic simulation: from quantum mechanics to machine learning.
    Kang PL; Liu ZP
    iScience; 2021 Jan; 24(1):102013. PubMed ID: 33490920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal reactions of formaldehyde and formic acid: free-energy analysis of equilibrium.
    Matubayasi N; Nakahara M
    J Chem Phys; 2005 Feb; 122(7):074509. PubMed ID: 15743256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical Role of Water and Oxygen Defects in C-O Scission during CO
    Yang J; Li Y; Zhao X; Fan W
    Langmuir; 2018 Mar; 34(12):3742-3754. PubMed ID: 29494149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of formic acid on the Pt(111) surface in the gas phase.
    Gao W; Keith JA; Anton J; Jacob T
    Dalton Trans; 2010 Sep; 39(36):8450-6. PubMed ID: 20714626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Illuminating CO2 reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O(3-x)(OH)y.
    Ghuman KK; Wood TE; Hoch LB; Mims CA; Ozin GA; Singh CV
    Phys Chem Chem Phys; 2015 Jun; 17(22):14623-35. PubMed ID: 25971705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a water-soluble rhodium complex in aqueous solution.
    Fukuzumi S; Kobayashi T; Suenobu T
    ChemSusChem; 2008; 1(10):827-34. PubMed ID: 18846597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study on the reaction mechanism of the gas-phase H2/CO2/Ni(3D) system.
    Qin S; Hu C; Yang H; Su Z
    J Phys Chem A; 2005 Jul; 109(29):6498-502. PubMed ID: 16833994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial intelligence pathway search to resolve catalytic glycerol hydrogenolysis selectivity.
    Kang PL; Shi YF; Shang C; Liu ZP
    Chem Sci; 2022 Jul; 13(27):8148-8160. PubMed ID: 35919423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction Network of Layer-to-Tunnel Transition of MnO2.
    Li YF; Zhu SC; Liu ZP
    J Am Chem Soc; 2016 Apr; 138(16):5371-9. PubMed ID: 27054525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.