These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 29055334)

  • 1. Calculations of nuclear magnetic shielding constants based on the exact two-component relativistic method.
    Yoshizawa T; Hada M
    J Chem Phys; 2017 Oct; 147(15):154104. PubMed ID: 29055334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method.
    Yoshizawa T; Zou W; Cremer D
    J Chem Phys; 2017 Apr; 146(13):134109. PubMed ID: 28390341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully relativistic calculations of NMR shielding tensors using restricted magnetically balanced basis and gauge including atomic orbitals.
    Komorovský S; Repiský M; Malkina OL; Malkin VG
    J Chem Phys; 2010 Apr; 132(15):154101. PubMed ID: 20423162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relativistic calculation of nuclear magnetic shielding using normalized elimination of the small component.
    Kudo K; Maeda H; Kawakubo T; Ootani Y; Funaki M; Fukui H
    J Chem Phys; 2006 Jun; 124(22):224106. PubMed ID: 16784262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals.
    Cheng L; Xiao Y; Liu W
    J Chem Phys; 2009 Dec; 131(24):244113. PubMed ID: 20059060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fully relativistic method for calculation of nuclear magnetic shielding tensors with a restricted magnetically balanced basis in the framework of the matrix Dirac-Kohn-Sham equation.
    Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin Ondík I; Kaupp M
    J Chem Phys; 2008 Mar; 128(10):104101. PubMed ID: 18345871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four-component relativistic density functional theory calculations of NMR shielding tensors for paramagnetic systems.
    Komorovsky S; Repisky M; Ruud K; Malkina OL; Malkin VG
    J Phys Chem A; 2013 Dec; 117(51):14209-19. PubMed ID: 24283465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leading-order relativistic effects on nuclear magnetic resonance shielding tensors.
    Manninen P; Ruud K; Lantto P; Vaara J
    J Chem Phys; 2005 Mar; 122(11):114107. PubMed ID: 15836201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric field effects on the shielding constants of noble gases: a four-component relativistic Hartree-Fock study.
    Pecul M; Saue T; Ruud K; Rizzo A
    J Chem Phys; 2004 Aug; 121(7):3051-7. PubMed ID: 15291614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connection between the regular approximation and the normalized elimination of the small component in relativistic quantum theory.
    Filatov M; Cremer D
    J Chem Phys; 2005 Feb; 122(6):064104. PubMed ID: 15740364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gauge origin independent calculations of nuclear magnetic shieldings in relativistic four-component theory.
    Ilias M; Saue T; Enevoldsen T; Jensen HJ
    J Chem Phys; 2009 Sep; 131(12):124119. PubMed ID: 19791864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of the LRESC Model on top of DFT Functionals for Relativistic NMR Shielding Calculations.
    Melo JI; Maldonado AF; Aucar GA
    J Chem Inf Model; 2020 Feb; 60(2):722-730. PubMed ID: 31877038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model.
    Hamaya S; Maeda H; Funaki M; Fukui H
    J Chem Phys; 2008 Dec; 129(22):224103. PubMed ID: 19071903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-Component Relativistic Calculations of NMR Shielding Constants of the Transition Metal Complexes-Part 2: Nitrogen-Coordinated Complexes of Cobalt.
    Samultsev DO; Semenov VA; Rusakova IL; Krivdin LB
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple scheme for magnetic balance in four-component relativistic Kohn-Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis.
    Olejniczak M; Bast R; Saue T; Pecul M
    J Chem Phys; 2012 Jan; 136(1):014108. PubMed ID: 22239770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of two-component and four-component approaches for calculations of spin-spin coupling constants and NMR shielding constants of transition metal cyanides.
    Wodyński A; Repiský M; Pecul M
    J Chem Phys; 2012 Jul; 137(1):014311. PubMed ID: 22779652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parity nonconservation contribution to the nuclear magnetic resonance shielding constants of chiral molecules: a four-component relativistic study.
    Bast R; Schwerdtfeger P; Saue T
    J Chem Phys; 2006 Aug; 125(6):64504. PubMed ID: 16942295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.
    Komorovsky S; Repisky M; Malkin E; Demissie TB; Ruud K
    J Chem Theory Comput; 2015 Aug; 11(8):3729-39. PubMed ID: 26574455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.
    Jankowska M; Kupka T; Stobiński L; Faber R; Lacerda EG; Sauer SP
    J Comput Chem; 2016 Feb; 37(4):395-403. PubMed ID: 26503739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.