These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 29055334)

  • 41. QM/MM calculation of protein magnetic shielding tensors with generalized hybrid-orbital method: a GIAO approach.
    Akinaga Y; Jung J; Ten-no S
    Phys Chem Chem Phys; 2011 Aug; 13(32):14490-9. PubMed ID: 21761071
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of Exact Exchange and Relativistic Approximations in Calculating
    Alkan F; Holmes ST; Dybowski C
    J Chem Theory Comput; 2017 Oct; 13(10):4741-4752. PubMed ID: 28930636
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relativistic environmental effects in (29)Si NMR chemical shifts of halosilanes: light nucleus, heavy environment.
    Fedorov SV; Rusakov YY; Krivdin LB
    J Phys Chem A; 2015 Jun; 119(22):5778-89. PubMed ID: 25946056
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure, solvent, and relativistic effects on the NMR chemical shifts in square-planar transition-metal complexes: assessment of DFT approaches.
    Vícha J; Novotný J; Straka M; Repisky M; Ruud K; Komorovsky S; Marek R
    Phys Chem Chem Phys; 2015 Oct; 17(38):24944-55. PubMed ID: 26344822
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Normal halogen dependence of
    Samultsev DO; Rusakov YY; Krivdin LB
    Magn Reson Chem; 2016 Oct; 54(10):787-792. PubMed ID: 27168025
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Four-component relativistic calculations of NMR shielding constants of the transition metal complexes. Part 1: Pentaammines of cobalt, rhodium, and iridium.
    Samultsev DO; Semenov VA; Krivdin LB
    Magn Reson Chem; 2022 Apr; 60(4):463-468. PubMed ID: 34978105
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ab initio calculations of the 1H and 14N NMR shielding constants in solid ammonia.
    Jackowski K; Barszczewicz A; Woźniak K
    Solid State Nucl Magn Reson; 1993 Oct; 2(5):265-8. PubMed ID: 7804779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calculations of nuclear quadrupole coupling in noble gas-noble metal fluorides: interplay of relativistic and electron correlation effects.
    Lantto P; Vaara J
    J Chem Phys; 2006 Nov; 125(17):174315. PubMed ID: 17100447
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Theoretical study of the NMR chemical shift of Xe in supercritical condition.
    Lacerda EG; Sauer SPA; Mikkelsen KV; Coutinho K; Canuto S
    J Mol Model; 2018 Feb; 24(3):62. PubMed ID: 29464335
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Decoupling of the Dirac equation correct to the third order for the magnetic perturbation.
    Ootani Y; Maeda H; Fukui H
    J Chem Phys; 2007 Aug; 127(8):084117. PubMed ID: 17764239
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ab initio calculation of 1H and 13C NMR shielding constants in solid acetylene.
    Pecul M; Jackowski K; Wozniak K; Sadlej J
    Solid State Nucl Magn Reson; 1997 May; 8(3):139-45. PubMed ID: 9211617
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On the Utmost Importance of the Basis Set Choice for the Calculations of the Relativistic Corrections to NMR Shielding Constants.
    Rusakova IL; Rusakov YY
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047204
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Treatment of scalar-relativistic effects on nuclear magnetic shieldings using a spin-free exact-two-component approach.
    Cheng L; Gauss J; Stanton JF
    J Chem Phys; 2013 Aug; 139(5):054105. PubMed ID: 23927241
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effects of intramolecular and intermolecular coordination on (31)P nuclear shielding: phosphorylated azoles.
    Chernyshev KA; Larina LI; Chirkina EA; Krivdin LB
    Magn Reson Chem; 2012 Feb; 50(2):120-7. PubMed ID: 22331772
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electron correlation within the relativistic no-pair approximation.
    Almoukhalalati A; Knecht S; Jensen HJ; Dyall KG; Saue T
    J Chem Phys; 2016 Aug; 145(7):074104. PubMed ID: 27544084
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ab initio and relativistic DFT study of spin-rotation and NMR shielding constants in XF₆ molecules, X = S, Se, Te, Mo, and W.
    Ruud K; Demissie TB; Jaszuński M
    J Chem Phys; 2014 May; 140(19):194308. PubMed ID: 24852539
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computation of NMR Shielding Constants for Solids Using an Embedded Cluster Approach with DFT, Double-Hybrid DFT, and MP2.
    Dittmer A; Stoychev GL; Maganas D; Auer AA; Neese F
    J Chem Theory Comput; 2020 Nov; 16(11):6950-6967. PubMed ID: 32966067
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analytic calculation of second-order electric response properties with the normalized elimination of the small component (NESC) method.
    Zou W; Filatov M; Cremer D
    J Chem Phys; 2012 Aug; 137(8):084108. PubMed ID: 22938219
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nuclear magnetic shielding constants of liquid water: insights from hybrid quantum mechanics/molecular mechanics models.
    Kongsted J; Nielsen CB; Mikkelsen KV; Christiansen O; Ruud K
    J Chem Phys; 2007 Jan; 126(3):034510. PubMed ID: 17249887
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The four-component DFT method for the calculation of the EPR g-tensor using a restricted magnetically balanced basis and London atomic orbitals.
    Misenkova D; Lemken F; Repisky M; Noga J; Malkina OL; Komorovsky S
    J Chem Phys; 2022 Oct; 157(16):164114. PubMed ID: 36319402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.