These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 2905598)

  • 1. Structural interpretation of the binding of 9-azidoacridine to D-amino acid oxidase.
    Nicholson BH; Batra SP
    Biochem J; 1988 Nov; 255(3):907-12. PubMed ID: 2905598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 9-azidoacridine, a new photoaffinity label for nucleotide- and aromatic-binding sites in proteins.
    Batra SP; Nicholson BH
    Biochem J; 1982 Oct; 207(1):101-8. PubMed ID: 7181853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of the inhibition of hog kidney D-amino acid oxidase by short-, medium- and long-chain fatty acids.
    Brachet P; Carreira S; Puigserver A
    Biochem Int; 1990 Dec; 22(5):837-42. PubMed ID: 1983068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of methionine-110 as the residue covalently modified in the electrophilic inactivation of D-amino-acid oxidase by O-(2,4-dinitrophenyl) hydroxylamine.
    D'Silva C; Williams CH; Massey V
    Biochemistry; 1987 Mar; 26(6):1717-22. PubMed ID: 2885027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the active centre of Rhodotorula gracilis D-amino acid oxidase and comparison with pig kidney enzyme.
    Pollegioni L; Ghisla S; Pilone MS
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):389-94. PubMed ID: 1356333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivity of D-amino acid oxidase with 1,2-cyclohexanedione: evidence for one arginine in the substrate-binding site.
    Ferti C; Curti B; Simonetta MP; Ronchi S; Galliano M; Minchiotti L
    Eur J Biochem; 1981 Oct; 119(3):553-7. PubMed ID: 6118269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affinity labeling of D-amino acid oxidase with an acetylenic substrate.
    Horiike K; Nishina Y; Miyake Y; Yamano T
    J Biochem; 1975 Jul; 78(1):57-63. PubMed ID: 379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoaffinity labeling of the active site of the Na+/K(+)-ATPase with 4-azido-2-nitrophenyl phosphate.
    Tran CM; Farley RA
    Biochemistry; 1996 Jan; 35(1):47-55. PubMed ID: 8555197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Composition of swine kidney D-aminoacid oxidase and preparation of the peptide containing the active site].
    Mizon J; Biserte G; Boulanger P
    Bull Soc Chim Biol (Paris); 1969 Jun; 51(2):419-23. PubMed ID: 4389737
    [No Abstract]   [Full Text] [Related]  

  • 10. Crystal structure of human D-amino acid oxidase: context-dependent variability of the backbone conformation of the VAAGL hydrophobic stretch located at the si-face of the flavin ring.
    Kawazoe T; Tsuge H; Pilone MS; Fukui K
    Protein Sci; 2006 Dec; 15(12):2708-17. PubMed ID: 17088322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the rat liver S-adenosylmethionine synthetase active site with 8-azido ATP.
    Deigner HP; Mato JM; Pajares MA
    Biochem J; 1995 Jun; 308 ( Pt 2)(Pt 2):565-71. PubMed ID: 7772043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of D-amino acid oxidase: a case of active site mirror-image convergent evolution with flavocytochrome b2.
    Mattevi A; Vanoni MA; Todone F; Rizzi M; Teplyakov A; Coda A; Bolognesi M; Curti B
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7496-501. PubMed ID: 8755502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of adenine binding domain peptides of the NADP+ active site within porcine heart NADP(+)-dependent isocitrate dehydrogenase.
    Sankaran B; Chavan AJ; Haley BE
    Biochemistry; 1996 Oct; 35(42):13501-10. PubMed ID: 8885829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the inactivation of the flavoprotein D-amino acid oxidase from Trigonopsis variabilis.
    Schräder T; Andreesen JR
    Appl Microbiol Biotechnol; 1996 May; 45(4):458-64. PubMed ID: 8737570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active site chlorination of D-amino acid oxidase by N-chloro-D-leucine.
    Porter DJ; Bright HJ
    J Biol Chem; 1976 Oct; 251(19):6150-3. PubMed ID: 9413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nephrotoxicity of D-proparglyglycine in mice.
    Konno R; Ikeda M; Yamaguchi K; Ueda Y; Niwa A
    Arch Toxicol; 2000 Oct; 74(8):473-9. PubMed ID: 11097385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D-amino acid oxidase from the yeast Trigonopsis variabilis.
    Kubicek-Pranz EM; Röhr M
    J Appl Biochem; 1985 Apr; 7(2):104-13. PubMed ID: 2865242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of 2-oxo-3-pentynoate as an active-site-directed inactivator of flavoprotein oxidases: identification of active-site peptides in tryptophan 2-monooxygenase.
    Gadda G; Dangott LJ; Johnson WH; Whitman CP; Fitzpatrick PF
    Biochemistry; 1999 May; 38(18):5822-8. PubMed ID: 10231533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of ATP binding regions in poly(A) polymerases by photoaffinity labeling and by mutational analysis identifies a domain conserved in many nucleotidyltransferases.
    Martin G; Jenö P; Keller W
    Protein Sci; 1999 Nov; 8(11):2380-91. PubMed ID: 10595540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.