BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29056096)

  • 1. Spirooxindoles as Potential Pharmacophores.
    Panda SS; Jones RA; Bachawala P; Mohapatra PP
    Mini Rev Med Chem; 2017; 17(16):1515-1536. PubMed ID: 29056096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spirooxindole: A Versatile Biologically Active Heterocyclic Scaffold.
    Panda SS; Girgis AS; Aziz MN; Bekheit MS
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spirooxindoles: Promising scaffolds for anticancer agents.
    Yu B; Yu DQ; Liu HM
    Eur J Med Chem; 2015 Jun; 97():673-98. PubMed ID: 24994707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An overview of spirooxindole as a promising scaffold for novel drug discovery.
    Zhou LM; Qu RY; Yang GF
    Expert Opin Drug Discov; 2020 May; 15(5):603-625. PubMed ID: 32106717
    [No Abstract]   [Full Text] [Related]  

  • 5. Molecular diversity of spirooxindoles. Synthesis and biological activity.
    Pavlovska TL; Redkin RG; Lipson VV; Atamanuk DV
    Mol Divers; 2016 Feb; 20(1):299-344. PubMed ID: 26419598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiroindoles as Potential Pharmacophores.
    Panda SS; Jones RA; Bachawala P; Mohapatra PP
    Mini Rev Med Chem; 2016 Jun; ():. PubMed ID: 27342230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural Product-Derived Spirooxindole Fragments Serve as Privileged Substructures for Discovery of New Anticancer Agents.
    Yu B; Zheng YC; Shi XJ; Qi PP; Liu HM
    Anticancer Agents Med Chem; 2016; 16(10):1315-24. PubMed ID: 26522954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of tetracyclic 3-spirooxindole through cross-dehydrogenation of pyridinium: applications in facile synthesis of (±)-corynoxine and (±)-corynoxine B.
    Xu J; Shao LD; Li D; Deng X; Liu YC; Zhao QS; Xia C
    J Am Chem Soc; 2014 Dec; 136(52):17962-5. PubMed ID: 25496352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents.
    Galliford CV; Scheidt KA
    Angew Chem Int Ed Engl; 2007; 46(46):8748-58. PubMed ID: 17943924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective synthesis of substituted oxindoles and spirooxindoles with applications in drug discovery.
    Badillo JJ; Hanhan NV; Franz AK
    Curr Opin Drug Discov Devel; 2010; 13(6):758-76. PubMed ID: 21061236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Development of Biologically Important Spirooxindoles as New Antimicrobial Agents.
    Yang YT; Zhu JF; Liao G; Xu HJ; Yu B
    Curr Med Chem; 2018; 25(19):2233-2244. PubMed ID: 29189121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A green synthetic approach toward the synthesis of structurally diverse spirooxindole derivative libraries under catalyst-free conditions.
    Kausar N; Masum AA; Islam MM; Das AR
    Mol Divers; 2017 May; 21(2):325-337. PubMed ID: 28190223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid three-component MgI(2)-mediated synthesis of 3,3-pyrollidinyl spirooxindoles.
    Helan V; Mills A; Drewry D; Grant D
    J Org Chem; 2010 Oct; 75(19):6693-5. PubMed ID: 20804180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The discovery of oxazolones-grafted spirooxindoles via three-component diversity oriented synthesis and their preliminary biological evaluation.
    Dong H; Song S; Li J; Xu C; Zhang H; Ouyang L
    Bioorg Med Chem Lett; 2015 Sep; 25(17):3585-91. PubMed ID: 26159483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From nature to drug discovery: the indole scaffold as a 'privileged structure'.
    de Sá Alves FR; Barreiro EJ; Fraga CA
    Mini Rev Med Chem; 2009 Jun; 9(7):782-93. PubMed ID: 19519503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold catalyzed double condensation reaction: Synthesis, antimicrobial and cytotoxicity of spirooxindole derivatives.
    Parthasarathy K; Praveen C; Jeyaveeran JC; Prince AA
    Bioorg Med Chem Lett; 2016 Sep; 26(17):4310-7. PubMed ID: 27476145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological importance of structurally diversified chromenes.
    Costa M; Dias TA; Brito A; Proença F
    Eur J Med Chem; 2016 Nov; 123():487-507. PubMed ID: 27494166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meeting Organocatalysis with Drug Discovery: Asymmetric Synthesis of 3,3'-Spirooxindoles Fused with Tetrahydrothiopyrans as Novel p53-MDM2 Inhibitors.
    Wang S; Jiang Y; Wu S; Dong G; Miao Z; Zhang W; Sheng C
    Org Lett; 2016 Mar; 18(5):1028-31. PubMed ID: 26883465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric Construction of Spirooxindoles by Organocatalytic Multicomponent Reactions Using Diazooxindoles.
    Wu MY; He WW; Liu XY; Tan B
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9409-13. PubMed ID: 26136346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress in Biological Activities of Indole and Indole Alkaloids.
    Singh TP; Singh OM
    Mini Rev Med Chem; 2018; 18(1):9-25. PubMed ID: 28782480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.