These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29056259)

  • 1. Relationship Between Left Ventricle Position and Haemodynamic Parameters During Cardiopulmonary Resuscitation in a Pig Model.
    Jung YH; Jeung KW; Lee DH; Jeong YW; Lee SM; Lee BK; Jeong IS; Lee SK; Choi J
    Heart Lung Circ; 2018 Dec; 27(12):1489-1497. PubMed ID: 29056259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Left Ventricular Compressions Improve Hemodynamics in a Swine Model of Out-of-Hospital Cardiac Arrest.
    Anderson KL; Castaneda MG; Boudreau SM; Sharon DJ; Bebarta VS
    Prehosp Emerg Care; 2017; 21(2):272-280. PubMed ID: 27918847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal position for external chest compression during cardiopulmonary resuscitation: an analysis based on chest CT in patients resuscitated from cardiac arrest.
    Cha KC; Kim YJ; Shin HJ; Cha YS; Kim H; Lee KH; Kwon W; Hwang SO
    Emerg Med J; 2013 Aug; 30(8):615-9. PubMed ID: 22833601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Left ventricular compressions improve return of spontaneous circulation and hemodynamics in a swine model of traumatic cardiopulmonary arrest.
    Anderson KL; Fiala KC; Castaneda MG; Boudreau SM; Araña AA; Bebarta VS
    J Trauma Acute Care Surg; 2018 Aug; 85(2):303-310. PubMed ID: 29613954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Left ventricular thrombus development during ventricular fibrillation and resolution during resuscitation in a swine model of sudden cardiac arrest.
    Budhram GR; Mader TJ; Lutfy L; Murman D; Almulhim A
    Resuscitation; 2014 May; 85(5):689-93. PubMed ID: 24518559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of 15:1, 15:2, and 30:2 compression-to-ventilation ratios for cardiopulmonary resuscitation in a canine model of a simulated, witnessed cardiac arrest.
    Hwang SO; Kim SH; Kim H; Jang YS; Zhao PG; Lee KH; Choi HJ; Shin TY
    Acad Emerg Med; 2008 Feb; 15(2):183-9. PubMed ID: 18275449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimally invasive direct cardiac massage versus closed-chest cardiopulmonary resuscitation in a porcine model of prolonged ventricular fibrillation cardiac arrest.
    Paiva EF; Kern KB; Hilwig RW; Scalabrini A; Ewy GA
    Resuscitation; 2000 Nov; 47(3):287-99. PubMed ID: 11114459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the Boussignac Cardiac arrest device (B-card) during cardiopulmonary resuscitation in an animal model.
    Moore JC; Lamhaut L; Hutin A; Dodd KW; Robinson AE; Lick MC; Salverda BJ; Hinke MB; Labarere J; Debaty G; Segal N
    Resuscitation; 2017 Oct; 119():81-88. PubMed ID: 28800887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniaturized mechanical chest compressor improves calculated cerebral perfusion pressure without compromising intracranial pressure during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Xu J; Hu X; Yang Z; Wu X; Bisera J; Sun S; Tang W
    Resuscitation; 2014 May; 85(5):683-8. PubMed ID: 24463224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between hemodynamic parameters and severity of ischemia-induced left ventricular wall thickening during cardiopulmonary resuscitation of consistent quality.
    Park SH; Lim YD; Jung YH; Jeung KW
    PLoS One; 2018; 13(11):e0208140. PubMed ID: 30485382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical personalized optimum chest compression point can be determined using posteroanterior chest radiography.
    Cho S; Oh WS; Chon SB; Kim S; Hwang K
    Resuscitation; 2018 Jul; 128():97-105. PubMed ID: 29746985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest.
    Yannopoulos D; Nadkarni VM; McKnite SH; Rao A; Kruger K; Metzger A; Benditt DG; Lurie KG
    Circulation; 2005 Aug; 112(6):803-11. PubMed ID: 16061732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved neurological outcome with continuous chest compressions compared with 30:2 compressions-to-ventilations cardiopulmonary resuscitation in a realistic swine model of out-of-hospital cardiac arrest.
    Ewy GA; Zuercher M; Hilwig RW; Sanders AB; Berg RA; Otto CW; Hayes MM; Kern KB
    Circulation; 2007 Nov; 116(22):2525-30. PubMed ID: 17998457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Left Ventricular Versus Traditional Chest Compressions in a Traumatic Pulseless Electrical Activity Model.
    Anderson KL; Evans JC; Castaneda MG; Boudreau SM; Maddry JK; Morgan JD
    Mil Med; 2022 Mar; 187(3-4):351-359. PubMed ID: 34143215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of an automatic, low pressure and constant flow ventilation device versus manual ventilation during cardiovascular resuscitation in a porcine model of cardiac arrest.
    Hu X; Ramadeen A; Laurent G; So PP; Baig E; Hare GM; Dorian P
    Resuscitation; 2013 Aug; 84(8):1150-5. PubMed ID: 23454260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms.
    Halperin HR; Paradis N; Ornato JP; Zviman M; Lacorte J; Lardo A; Kern KB
    J Am Coll Cardiol; 2004 Dec; 44(11):2214-20. PubMed ID: 15582320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reperfusion injury protection during Basic Life Support improves circulation and survival outcomes in a porcine model of prolonged cardiac arrest.
    Debaty G; Lurie K; Metzger A; Lick M; Bartos JA; Rees JN; McKnite S; Puertas L; Pepe P; Fowler R; Yannopoulos D
    Resuscitation; 2016 Aug; 105():29-35. PubMed ID: 27211835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous sternothoracic cardiopulmonary resuscitation: a new method of cardiopulmonary resuscitation.
    Hwang SO; Lee KH; Cho JH; Oh BJ; Gupta DS; Ornato JP; Lee SH; Yoon J; Choe KH
    Resuscitation; 2001 Mar; 48(3):293-9. PubMed ID: 11278095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the active compression-decompression device (ACD) in cardiopulmonary resuscitation using transoesophageal echocardiography.
    Pell AC; Pringle SD; Guly UM; Steedman DJ; Robertson CE
    Resuscitation; 1994 Mar; 27(2):137-40. PubMed ID: 8029535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pilot Study to Compare the Use of End-Tidal Carbon Dioxide-Guided and Diastolic Blood Pressure-Guided Chest Compression Delivery in a Swine Model of Neonatal Asphyxial Cardiac Arrest.
    O'Brien CE; Reyes M; Santos PT; Heitmiller SE; Kulikowicz E; Kudchadkar SR; Lee JK; Hunt EA; Koehler RC; Shaffner DH
    J Am Heart Assoc; 2018 Oct; 7(19):e009728. PubMed ID: 30371318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.