BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 29056355)

  • 1. Three-dimensional macroporous materials for tissue engineering of craniofacial bone.
    Shakya AK; Kandalam U
    Br J Oral Maxillofac Surg; 2017 Nov; 55(9):875-891. PubMed ID: 29056355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryogel scaffolds from patient-specific 3D-printed molds for personalized tissue-engineered bone regeneration in pediatric cleft-craniofacial defects.
    Hixon KR; Melvin AM; Lin AY; Hall AF; Sell SA
    J Biomater Appl; 2017 Nov; 32(5):598-611. PubMed ID: 28980856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.
    Obregon F; Vaquette C; Ivanovski S; Hutmacher DW; Bertassoni LE
    J Dent Res; 2015 Sep; 94(9 Suppl):143S-52S. PubMed ID: 26124216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional printing of bone repair and replacement materials: impact on craniofacial surgery.
    Ricci JL; Clark EA; Murriky A; Smay JE
    J Craniofac Surg; 2012 Jan; 23(1):304-8. PubMed ID: 22337431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering.
    Cao H; Kuboyama N
    Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Craniofacial bone tissue engineering.
    Petrovic V; Zivkovic P; Petrovic D; Stefanovic V
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2012 Sep; 114(3):e1-9. PubMed ID: 22862985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroporous Hydrogels Composed Entirely of Synthetic Polypeptides: Biocompatible and Enzyme Biodegradable 3D Cellular Scaffolds.
    Shirbin SJ; Karimi F; Chan NJ; Heath DE; Qiao GG
    Biomacromolecules; 2016 Sep; 17(9):2981-91. PubMed ID: 27472153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration.
    Hixon KR; Eberlin CT; Lu T; Neal SM; Case ND; McBride-Gagyi SH; Sell SA
    Biomed Mater; 2017 Mar; 12(2):025005. PubMed ID: 28145891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Winner of the Young Investigator Award of the Society for Biomaterials at the 10th World Biomaterials Congress, May 17-22, 2016, Montreal QC, Canada: Microribbon-based hydrogels accelerate stem cell-based bone regeneration in a mouse critical-size cranial defect model.
    Han LH; Conrad B; Chung MT; Deveza L; Jiang X; Wang A; Butte MJ; Longaker MT; Wan D; Yang F
    J Biomed Mater Res A; 2016 Jun; 104(6):1321-31. PubMed ID: 26991141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Citric acid-based hydroxyapatite composite scaffolds enhance calvarial regeneration.
    Sun D; Chen Y; Tran RT; Xu S; Xie D; Jia C; Wang Y; Guo Y; Zhang Z; Guo J; Yang J; Jin D; Bai X
    Sci Rep; 2014 Nov; 4():6912. PubMed ID: 25372769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering craniofacial scaffolds.
    Hollister SJ; Lin CY; Saito E; Lin CY; Schek RD; Taboas JM; Williams JM; Partee B; Flanagan CL; Diggs A; Wilke EN; Van Lenthe GH; Müller R; Wirtz T; Das S; Feinberg SE; Krebsbach PH
    Orthod Craniofac Res; 2005 Aug; 8(3):162-73. PubMed ID: 16022718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications.
    Lévesque SG; Lim RM; Shoichet MS
    Biomaterials; 2005 Dec; 26(35):7436-46. PubMed ID: 16023718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomaterials for Craniofacial Bone Regeneration.
    Thrivikraman G; Athirasala A; Twohig C; Boda SK; Bertassoni LE
    Dent Clin North Am; 2017 Oct; 61(4):835-856. PubMed ID: 28886771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future.
    Baino F; Vitale-Brovarone C
    J Biomed Mater Res A; 2011 Jun; 97(4):514-35. PubMed ID: 21465645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing three different three-dimensional scaffolds for bone tissue engineering: an in vivo study.
    Rismanchian M; Nosouhian S; Razavi SM; Davoudi A; Sadeghiyan H
    J Contemp Dent Pract; 2015 Jan; 16(1):25-30. PubMed ID: 25876946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
    Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-driven processing techniques for manufacturing fully interconnected porous scaffolds in bone tissue engineering.
    Guarino V; Ambrosio L
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1389-400. PubMed ID: 21287827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inorganic/organic biocomposite cryogels for regeneration of bony tissues.
    Mishra R; Kumar A
    J Biomater Sci Polym Ed; 2011; 22(16):2107-26. PubMed ID: 21067655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of craniofacial regeneration in China.
    Li Y; Zhang Q; Xie X; Xiao D; Lin Y
    J Oral Rehabil; 2020 Nov; 47 Suppl 1():107-117. PubMed ID: 30868603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.