These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 29056388)

  • 1. Aqueous Hg(II) immobilization by chitosan stabilized magnetic iron sulfide nanoparticles.
    Sun M; Cheng G; Ge X; Chen M; Wang C; Lou L; Xu X
    Sci Total Environ; 2018 Apr; 621():1074-1083. PubMed ID: 29056388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS).
    Jeong HY; Klaue B; Blum JD; Hayes KF
    Environ Sci Technol; 2007 Nov; 41(22):7699-705. PubMed ID: 18075077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: reaction mechanisms and effects of stabilizer and water chemistry.
    Gong Y; Liu Y; Xiong Z; Zhao D
    Environ Sci Technol; 2014 Apr; 48(7):3986-94. PubMed ID: 24568693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of aqueous Hg(II) by mackinawite (FeS).
    Liu J; Valsaraj KT; Devai I; DeLaune RD
    J Hazard Mater; 2008 Sep; 157(2-3):432-40. PubMed ID: 18280650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles.
    Xiong Z; He F; Zhao D; Barnett MO
    Water Res; 2009 Dec; 43(20):5171-9. PubMed ID: 19748651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg(II)) from water.
    Han DS; Orillano M; Khodary A; Duan Y; Batchelor B; Abdel-Wahab A
    Water Res; 2014 Apr; 53():310-21. PubMed ID: 24530550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of chitosan-stabilized Fe(0) nanoparticles for removal of hexavalent chromium in water.
    Geng B; Jin Z; Li T; Qi X
    Sci Total Environ; 2009 Sep; 407(18):4994-5000. PubMed ID: 19545888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition between disordered iron sulfide and natural organic matter associated thiols for mercury(II)-an EXAFS study.
    Skyllberg U; Drott A
    Environ Sci Technol; 2010 Feb; 44(4):1254-9. PubMed ID: 20099882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient removal of aqueous Hg(II) by FeS micro-flakes.
    Xiao M; Lai X; He J; Huang J; Tang Z; Wu R; Jian J
    Sci Total Environ; 2023 Apr; 870():162013. PubMed ID: 36737015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green remediation of mercury-contaminated soil using iron sulfide nanoparticles: Immobilization performance and mechanisms, effects on soil properties, and life cycle assessment.
    Lin D; Hu G; Li H; Wu F; Li L; Yang G; Zhuang L; Gong Y
    Sci Total Environ; 2024 Sep; 944():173928. PubMed ID: 38871308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water.
    Yan W; Herzing AA; Kiely CJ; Zhang WX
    J Contam Hydrol; 2010 Nov; 118(3-4):96-104. PubMed ID: 20889228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraeffective ZnS nanocrystals sorbent for mercury(II) removal based on size-dependent cation exchange.
    Qu Z; Yan L; Li L; Xu J; Liu M; Li Z; Yan N
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18026-32. PubMed ID: 25299972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles.
    Gong Y; Liu Y; Xiong Z; Kaback D; Zhao D
    Nanotechnology; 2012 Jul; 23(29):294007. PubMed ID: 22743738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatilization and sorption of dissolved mercury by metallic iron of different particle sizes: implications for treatment of mercury contaminated water effluents.
    Vernon JD; Bonzongo JC
    J Hazard Mater; 2014 Jul; 276():408-14. PubMed ID: 24929302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of uranium by biomaterial stabilized FeS nanoparticles: Effects of stabilizer and enrichment mechanism.
    Shao D; Ren X; Wen J; Hu S; Xiong J; Jiang T; Wang X; Wang X
    J Hazard Mater; 2016 Jan; 302():1-9. PubMed ID: 26448488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precipitation of mercuric sulfide nanoparticles in NOM-containing water: implications for the natural environment.
    Deonarine A; Hsu-Kim H
    Environ Sci Technol; 2009 Apr; 43(7):2368-73. PubMed ID: 19452888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refining thermodynamic constants for mercury(II)-sulfides in equilibrium with metacinnabar at sub-micromolar aqueous sulfide concentrations.
    Drott A; Björn E; Bouchet S; Skyllberg U
    Environ Sci Technol; 2013 May; 47(9):4197-203. PubMed ID: 23470118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient removal and long-term sequestration of cadmium from aqueous solution using ferrous sulfide nanoparticles: Performance, mechanisms, and long-term stability.
    Tian S; Gong Y; Ji H; Duan J; Zhao D
    Sci Total Environ; 2020 Feb; 704():135402. PubMed ID: 31896215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution.
    Wu Y; Wang Y; Luo G; Dai Y
    Bioresour Technol; 2009 Jul; 100(14):3459-64. PubMed ID: 19329306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Sulfide removal from wastewater by nanoscale iron].
    Xi HB; Yang Q; Shang HT; Hao CB; Li ZL
    Huan Jing Ke Xue; 2008 Sep; 29(9):2529-35. PubMed ID: 19068638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.