BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29056485)

  • 1. Biodegradation of inorganic drug delivery systems in subcutaneous conditions.
    Kovalainen M; Kamakura R; Riikonen J; Finnilä M; Nissinen T; Rantanen J; Niemelä M; Perämäki P; Mäkinen M; Herzig KH; Lehto VP
    Eur J Pharm Biopharm; 2018 Jan; 122():113-125. PubMed ID: 29056485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of surface chemistry of porous silicon microparticles on glucagon-like peptide-1 (GLP-1) loading, release and biological activity.
    Huotari A; Xu W; Mönkäre J; Kovalainen M; Herzig KH; Lehto VP; Järvinen K
    Int J Pharm; 2013 Sep; 454(1):67-73. PubMed ID: 23834832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of porous silicon nanocarriers for parenteral peptide delivery.
    Kovalainen M; Mönkäre J; Kaasalainen M; Riikonen J; Lehto VP; Salonen J; Herzig KH; Järvinen K
    Mol Pharm; 2013 Jan; 10(1):353-9. PubMed ID: 23186283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoporous silicon (PSi) for sustained peptide delivery: effect of psi microparticle surface chemistry on peptide YY3-36 release.
    Kovalainen M; Mönkäre J; Mäkilä E; Salonen J; Lehto VP; Herzig KH; Järvinen K
    Pharm Res; 2012 Mar; 29(3):837-46. PubMed ID: 22033881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured porous silicon microparticles enable sustained peptide (Melanotan II) delivery.
    Kilpeläinen M; Mönkäre J; Vlasova MA; Riikonen J; Lehto VP; Salonen J; Järvinen K; Herzig KH
    Eur J Pharm Biopharm; 2011 Jan; 77(1):20-5. PubMed ID: 20965250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Biodegradation Study of SBA-15 Microparticles in Simulated Body Fluid and in Vivo.
    Choi Y; Lee JE; Lee JH; Jeong JH; Kim J
    Langmuir; 2015 Jun; 31(23):6457-62. PubMed ID: 26013363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface engineering of porous silicon microparticles for intravitreal sustained delivery of rapamycin.
    Nieto A; Hou H; Moon SW; Sailor MJ; Freeman WR; Cheng L
    Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):1070-80. PubMed ID: 25613937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional porous silicon for therapeutic drug delivery and imaging.
    Santos HA; Bimbo LM; Lehto VP; Airaksinen AJ; Salonen J; Hirvonen J
    Curr Drug Discov Technol; 2011 Sep; 8(3):228-49. PubMed ID: 21291407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide).
    McInnes SJ; Irani Y; Williams KA; Voelcker NH
    Nanomedicine (Lond); 2012 Jul; 7(7):995-1016. PubMed ID: 22394185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications.
    Mori M; Almeida PV; Cola M; Anselmi G; Mäkilä E; Correia A; Salonen J; Hirvonen J; Caramella C; Santos HA
    Eur J Pharm Biopharm; 2014 Nov; 88(3):635-42. PubMed ID: 25305585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers.
    Shrestha N; Shahbazi MA; Araújo F; Zhang H; Mäkilä EM; Kauppila J; Sarmento B; Salonen JJ; Hirvonen JT; Santos HA
    Biomaterials; 2014 Aug; 35(25):7172-9. PubMed ID: 24844163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo biocompatibility of porous silicon biomaterials for drug delivery to the heart.
    Tölli MA; Ferreira MP; Kinnunen SM; Rysä J; Mäkilä EM; Szabó Z; Serpi RE; Ohukainen PJ; Välimäki MJ; Correia AM; Salonen JJ; Hirvonen JT; Ruskoaho HJ; Santos HA
    Biomaterials; 2014 Sep; 35(29):8394-405. PubMed ID: 24985734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles.
    Bimbo LM; Mäkilä E; Raula J; Laaksonen T; Laaksonen P; Strommer K; Kauppinen EI; Salonen J; Linder MB; Hirvonen J; Santos HA
    Biomaterials; 2011 Dec; 32(34):9089-99. PubMed ID: 21864895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface chemistry and pore size affect carrier properties of mesoporous silicon microparticles.
    Limnell T; Riikonen J; Salonen J; Kaukonen AM; Laitinen L; Hirvonen J; Lehto VP
    Int J Pharm; 2007 Oct; 343(1-2):141-7. PubMed ID: 17600644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery.
    Bonanno LM; Segal E
    Nanomedicine (Lond); 2011 Dec; 6(10):1755-70. PubMed ID: 22122584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles.
    Kilpeläinen M; Riikonen J; Vlasova MA; Huotari A; Lehto VP; Salonen J; Herzig KH; Järvinen K
    J Control Release; 2009 Jul; 137(2):166-70. PubMed ID: 19345247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in porous silicon technology for drug delivery.
    Barnes TJ; Jarvis KL; Prestidge CA
    Ther Deliv; 2013 Jul; 4(7):811-23. PubMed ID: 23883125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of surface chemistry of mesoporous alumina with wide pore distribution on controlled drug release.
    Kapoor S; Hegde R; Bhattacharyya AJ
    J Control Release; 2009 Nov; 140(1):34-9. PubMed ID: 19654029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug delivery via porous silicon: a focused patent review.
    Kulyavtsev PA; Spencer RP
    Pharm Pat Anal; 2017 Mar; 6(2):77-85. PubMed ID: 28248125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole.
    Kinnari P; Mäkilä E; Heikkilä T; Salonen J; Hirvonen J; Santos HA
    Int J Pharm; 2011 Jul; 414(1-2):148-56. PubMed ID: 21601623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.