BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 29056509)

  • 21. Primary ciliary dyskinesia.
    Bush A
    Acta Otorhinolaryngol Belg; 2000; 54(3):317-24. PubMed ID: 11082768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of guaifenesin on nasal mucociliary clearance and ciliary beat frequency in healthy volunteers.
    Sisson JH; Yonkers AJ; Waldman RH
    Chest; 1995 Mar; 107(3):747-51. PubMed ID: 7874947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proof of Concept: Very Rapid Tidal Breathing Nasal Nitric Oxide Sampling Discriminates Primary Ciliary Dyskinesia from Healthy Subjects.
    Holgersen MG; Marthin JK; Nielsen KG
    Lung; 2019 Apr; 197(2):209-216. PubMed ID: 30762092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of arginine on mucociliary function in primary ciliary dyskinesia.
    Loukides S; Kharitonov S; Wodehouse T; Cole PJ; Barnes PJ
    Lancet; 1998 Aug; 352(9125):371-2. PubMed ID: 9717932
    [No Abstract]   [Full Text] [Related]  

  • 25. Ciliary disorientation in patients with chronic upper respiratory tract inflammation.
    Rayner CF; Rutman A; Dewar A; Cole PJ; Wilson R
    Am J Respir Crit Care Med; 1995 Mar; 151(3 Pt 1):800-4. PubMed ID: 7881674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlations between ciliary structure and ciliary function.
    Willems T; Jorissen M
    Acta Otorhinolaryngol Belg; 2000; 54(3):299-308. PubMed ID: 11082766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variation of Ciliary Beat Pattern in Three Different Beating Planes in Healthy Subjects.
    Kempeneers C; Seaton C; Chilvers MA
    Chest; 2017 May; 151(5):993-1001. PubMed ID: 27693596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep phenotyping, including quantitative ciliary beating parameters, and extensive genotyping in primary ciliary dyskinesia.
    Blanchon S; Legendre M; Bottier M; Tamalet A; Montantin G; Collot N; Faucon C; Dastot F; Copin B; Clement A; Filoche M; Coste A; Amselem S; Escudier E; Papon JF; Louis B
    J Med Genet; 2020 Apr; 57(4):237-244. PubMed ID: 31772028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incidence of primary ciliary dyskinesia in children with recurrent respiratory diseases.
    Chapelin C; Coste A; Reinert P; Boucherat M; Millepied MC; Poron F; Escudier E
    Ann Otol Rhinol Laryngol; 1997 Oct; 106(10 Pt 1):854-8. PubMed ID: 9342982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Limitations of Nasal Nitric Oxide Measurement for Diagnosis of Primary Ciliary Dyskinesia with Normal Ultrastructure.
    Raidt J; Krenz H; Tebbe J; Große-Onnebrink J; Olbrich H; Loges NT; Biebach L; Schmalstieg C; Keßler C; Wallmeier J; Dworniczak B; Pennekamp P; Dugas M; Werner C; Omran H
    Ann Am Thorac Soc; 2022 Aug; 19(8):1275-1284. PubMed ID: 35202559
    [No Abstract]   [Full Text] [Related]  

  • 31. Role of adenylate kinase type 7 expression on cilia motility: possible link in primary ciliary dyskinesia.
    Milara J; Armengot M; Mata M; Morcillo EJ; Cortijo J
    Am J Rhinol Allergy; 2010; 24(3):181-5. PubMed ID: 20537283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ciliary function analysis for the diagnosis of primary ciliary dyskinesia: advantages of ciliogenesis in culture.
    Jorissen M; Willems T; Van der Schueren B
    Acta Otolaryngol; 2000 Mar; 120(2):291-5. PubMed ID: 11603792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Airway ciliary dysfunction and sinopulmonary symptoms in patients with congenital heart disease.
    Garrod AS; Zahid M; Tian X; Francis RJ; Khalifa O; Devine W; Gabriel GC; Leatherbury L; Lo CW
    Ann Am Thorac Soc; 2014 Nov; 11(9):1426-32. PubMed ID: 25302410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diagnostic accuracy of nitric oxide measurements to detect primary ciliary dyskinesia.
    Boon M; Meyts I; Proesmans M; Vermeulen FL; Jorissen M; De Boeck K
    Eur J Clin Invest; 2014 May; 44(5):477-85. PubMed ID: 24597492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ethanol stimulates apparent nitric oxide-dependent ciliary beat frequency in bovine airway epithelial cells.
    Sisson JH
    Am J Physiol; 1995 Apr; 268(4 Pt 1):L596-600. PubMed ID: 7537462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Diagnostic procedure in primary ciliary dyskinesia].
    Riechelmann H; Hafner B; Maurer J; Mann W
    Laryngorhinootologie; 1999 Apr; 78(4):194-9. PubMed ID: 10407825
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitric oxide in primary ciliary dyskinesia.
    Walker WT; Jackson CL; Lackie PM; Hogg C; Lucas JS
    Eur Respir J; 2012 Oct; 40(4):1024-32. PubMed ID: 22408195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitric oxide levels and ciliary beat frequency in indigenous New Zealand children.
    Edwards EA; Douglas C; Broome S; Kolbe J; Jensen CG; Dewar A; Bush A; Byrnes CA
    Pediatr Pulmonol; 2005 Mar; 39(3):238-46. PubMed ID: 15635620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TNF-alpha and IL-1 beta upregulate nitric oxide-dependent ciliary motility in bovine airway epithelium.
    Jain B; Rubinstein I; Robbins RA; Sisson JH
    Am J Physiol; 1995 Jun; 268(6 Pt 1):L911-7. PubMed ID: 7541949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional analysis and evaluation of respiratory cilia in healthy Chinese children.
    Lee SL; O'Callaghan C; Lau YL; Lee CD
    Respir Res; 2020 Oct; 21(1):259. PubMed ID: 33036612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.