BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29056754)

  • 1. Subcutaneous Photovoltaic Infrared Energy Harvesting for Bio-Implantable Devices.
    Moon E; Blaauw D; Phillips JD
    IEEE Trans Electron Devices; 2017 May; 64(5):2432-2437. PubMed ID: 29056754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared Energy Harvesting in Millimeter-Scale GaAs Photovoltaics.
    Moon E; Blaauw D; Phillips JD
    IEEE Trans Electron Devices; 2017 Nov; 64(11):4554-4560. PubMed ID: 29129936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Powered Implantable Medical Devices: Photovoltaic Energy Harvesting Review.
    Zhao J; Ghannam R; Htet KO; Liu Y; Law MK; Roy VAL; Michel B; Imran MA; Heidari H
    Adv Healthc Mater; 2020 Sep; 9(17):e2000779. PubMed ID: 32729228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-area Si Photovoltaics for Low-Flux Infrared Energy Harvesting.
    Moon E; Blaauw D; Phillips JD
    IEEE Trans Electron Devices; 2017 Jan; 64(1):15-20. PubMed ID: 34650311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Junction GaAs Photovoltaics for Low Irradiance Wireless Power Transfer in Submillimeter-Scale Sensor Nodes.
    Moon E; Barrow M; Lim J; Blaauw D; Phillips JD
    IEEE J Photovolt; 2020 Nov; 10(6):1721-1726. PubMed ID: 33224555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indoor light energy harvesting for battery-powered sensors using small photovoltaic modules.
    Shore A; Roller J; Bergeson J; Hamadani BH
    Energy Sci Eng; 2021 Nov; 9(11):. PubMed ID: 37533957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon nanocrystal hybrid photovoltaic devices for indoor light energy harvesting.
    Otsuka M; Kurokawa Y; Ding Y; Juangsa FB; Shibata S; Kato T; Nozaki T
    RSC Adv; 2020 Mar; 10(21):12611-12618. PubMed ID: 35497598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy harvesting for the implantable biomedical devices: issues and challenges.
    Hannan MA; Mutashar S; Samad SA; Hussain A
    Biomed Eng Online; 2014 Jun; 13():79. PubMed ID: 24950601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diamond encapsulated photovoltaics for transdermal power delivery.
    Ahnood A; Fox KE; Apollo NV; Lohrmann A; Garrett DJ; Nayagam DA; Karle T; Stacey A; Abberton KM; Morrison WA; Blakers A; Prawer S
    Biosens Bioelectron; 2016 Mar; 77():589-97. PubMed ID: 26476599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Efficiency Photovoltaic Modules on a Chip for Millimeter-Scale Energy Harvesting.
    Moon E; Lee I; Blaauw D; Phillips JD
    Prog Photovolt; 2019 Jun; 27(6):540-546. PubMed ID: 34354330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired, Nanostructure-Amplified, Subcutaneous Light Harvesting to Power Implantable Biomedical Electronics.
    Sun L; Cheng C; Wang S; Tang J; Xie R; Wang D
    ACS Nano; 2021 Aug; 15(8):12475-12482. PubMed ID: 34355573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.
    Han N; Yang ZX; Wang F; Dong G; Yip S; Liang X; Hung TF; Chen Y; Ho JC
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20454-9. PubMed ID: 26284305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy harvesting for human wearable and implantable bio-sensors.
    Mitcheson PD
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3432-6. PubMed ID: 21097254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound-Induced Wireless Energy Harvesting: From Materials Strategies to Functional Applications.
    Jiang L; Yang Y; Chen Y; Zhou Q
    Nano Energy; 2020 Nov; 77():. PubMed ID: 32905454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy Harvesting for GaAs Photovoltaics Under Low-Flux Indoor Lighting Conditions.
    Teran AS; Moon E; Lim W; Kim G; Lee I; Blaauw D; Phillips JD
    IEEE Trans Electron Devices; 2016 Jul; 63(7):2820-2825. PubMed ID: 28133394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimally invasive power sources for implantable electronics.
    Xu M; Liu Y; Yang K; Li S; Wang M; Wang J; Yang D; Shkunov M; Silva SRP; Castro FA; Zhao Y
    Exploration (Beijing); 2024 Feb; 4(1):20220106. PubMed ID: 38854488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies.
    Yoon J; Jo S; Chun IS; Jung I; Kim HS; Meitl M; Menard E; Li X; Coleman JJ; Paik U; Rogers JA
    Nature; 2010 May; 465(7296):329-33. PubMed ID: 20485431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward Visibly Transparent Organic Photovoltaic Cells Based on a Near-Infrared Harvesting Bulk Heterojunction Blend.
    Lee J; Cha H; Yao H; Hou J; Suh YH; Jeong S; Lee K; Durrant JR
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32764-32770. PubMed ID: 32588623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-thin Ag/Si heterojunction hot-carrier photovoltaic conversion Schottky devices for harvesting solar energy at wavelength above 1.1 µm.
    Su ZC; Chang CH; Jhou JC; Lin HT; Lin CF
    Sci Rep; 2023 Apr; 13(1):5388. PubMed ID: 37012262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Organic Energy-Harvesting Devices and Modules for Self-Sustainable Power Generation under Ambient Indoor Lighting Environments.
    Arai R; Furukawa S; Hidaka Y; Komiyama H; Yasuda T
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9259-9264. PubMed ID: 30789698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.