These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29057197)

  • 41. Double robust and efficient estimation of a prognostic model for events in the presence of dependent censoring.
    Schnitzer ME; Lok JJ; Bosch RJ
    Biostatistics; 2016 Jan; 17(1):165-77. PubMed ID: 26224070
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Causal Inference Under Interference And Network Uncertainty.
    Bhattacharya R; Malinsky D; Shpitser I
    Uncertain Artif Intell; 2019 Jul; 2019():. PubMed ID: 31885520
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hypothetical Estimands in Clinical Trials: A Unification of Causal Inference and Missing Data Methods.
    Olarte Parra C; Daniel RM; Bartlett JW
    Stat Biopharm Res; 2023; 15(2):421-432. PubMed ID: 37260584
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Bayesian nonparametric approach to marginal structural models for point treatments and a continuous or survival outcome.
    Roy J; Lum KJ; Daniels MJ
    Biostatistics; 2017 Jan; 18(1):32-47. PubMed ID: 27345532
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microbial Networks in SPRING - Semi-parametric Rank-Based Correlation and Partial Correlation Estimation for Quantitative Microbiome Data.
    Yoon G; Gaynanova I; Müller CL
    Front Genet; 2019; 10():516. PubMed ID: 31244881
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bayesian causal inference for observational studies with missingness in covariates and outcomes.
    Zang H; Kim HJ; Huang B; Szczesniak R
    Biometrics; 2023 Dec; 79(4):3624-3636. PubMed ID: 37553770
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Emulating Target Trials to Improve Causal Inference From Agent-Based Models.
    Murray EJ; Marshall BDL; Buchanan AL
    Am J Epidemiol; 2021 Aug; 190(8):1652-1658. PubMed ID: 33595053
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Causal inference when counterfactuals depend on the proportion of all subjects exposed.
    Miles CH; Petersen M; van der Laan MJ
    Biometrics; 2019 Sep; 75(3):768-777. PubMed ID: 30714118
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ADAPTIVE MATCHING IN RANDOMIZED TRIALS AND OBSERVATIONAL STUDIES.
    van der Laan MJ; Balzer LB; Petersen ML
    J Stat Res; 2012 Dec; 46(2):113-156. PubMed ID: 25097298
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Generally Efficient Targeted Minimum Loss Based Estimator based on the Highly Adaptive Lasso.
    van der Laan M
    Int J Biostat; 2017 Oct; 13(2):. PubMed ID: 29023235
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Joint mixed-effects models for causal inference with longitudinal data.
    Shardell M; Ferrucci L
    Stat Med; 2018 Feb; 37(5):829-846. PubMed ID: 29205454
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Variable Selection for Confounder Control, Flexible Modeling and Collaborative Targeted Minimum Loss-Based Estimation in Causal Inference.
    Schnitzer ME; Lok JJ; Gruber S
    Int J Biostat; 2016 May; 12(1):97-115. PubMed ID: 26226129
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Scalable collaborative targeted learning for high-dimensional data.
    Ju C; Gruber S; Lendle SD; Chambaz A; Franklin JM; Wyss R; Schneeweiss S; van der Laan MJ
    Stat Methods Med Res; 2019 Feb; 28(2):532-554. PubMed ID: 28936917
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Targeted estimation of nuisance parameters to obtain valid statistical inference.
    van der Laan MJ
    Int J Biostat; 2014; 10(1):29-57. PubMed ID: 24516006
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies.
    Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R
    Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Framework for the Comparison of Maximum Pseudo Likelihood and Maximum Likelihood Estimation of Exponential Family Random Graph Models.
    van Duijn MA; Gile KJ; Handcock MS
    Soc Networks; 2009 Jan; 31(1):52-62. PubMed ID: 23170041
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A scoping review of causal methods enabling predictions under hypothetical interventions.
    Lin L; Sperrin M; Jenkins DA; Martin GP; Peek N
    Diagn Progn Res; 2021 Feb; 5(1):3. PubMed ID: 33536082
    [TBL] [Abstract][Full Text] [Related]  

  • 58. EFFECT OF BREASTFEEDING ON GASTROINTESTINAL INFECTION IN INFANTS: A TARGETED MAXIMUM LIKELIHOOD APPROACH FOR CLUSTERED LONGITUDINAL DATA.
    Schnitzer ME; van der Laan MJ; Moodie EE; Platt RW
    Ann Appl Stat; 2014 Jun; 8(2):703-725. PubMed ID: 25505499
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Introduction to computational causal inference using reproducible Stata, R, and Python code: A tutorial.
    Smith MJ; Mansournia MA; Maringe C; Zivich PN; Cole SR; Leyrat C; Belot A; Rachet B; Luque-Fernandez MA
    Stat Med; 2022 Jan; 41(2):407-432. PubMed ID: 34713468
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Estimating the Comparative Effectiveness of Feeding Interventions in the Pediatric Intensive Care Unit: A Demonstration of Longitudinal Targeted Maximum Likelihood Estimation.
    Kreif N; Tran L; Grieve R; De Stavola B; Tasker RC; Petersen M
    Am J Epidemiol; 2017 Dec; 186(12):1370-1379. PubMed ID: 28992064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.