These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29057319)

  • 1. Strong amplitude and phase modulation of optical spatial coherence with surface plasmon polaritons.
    Li D; Pacifici D
    Sci Adv; 2017 Oct; 3(10):e1700133. PubMed ID: 29057319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of optical spatial coherence by surface plasmon polaritons.
    Divitt S; Frimmer M; Visser TD; Novotny L
    Opt Lett; 2016 Jul; 41(13):3094-7. PubMed ID: 27367110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherence of light scattered from a randomly rough surface.
    Leskova TA; Maradudin AA; Munõz-Lopez J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036606. PubMed ID: 15903604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Control of Young's Type Double-slit Interferometer for Laser-induced Electron Emission from a Nano-tip.
    Yanagisawa H; Ciappina M; Hafner C; Schötz J; Osterwalder J; Kling MF
    Sci Rep; 2017 Oct; 7(1):12661. PubMed ID: 28978914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional metasurfaces based on metallic and dielectric subwavelength slits and stripes array.
    Guo Y; Pu M; Li X; Ma X; Gao P; Wang Y; Luo X
    J Phys Condens Matter; 2018 Apr; 30(14):144003. PubMed ID: 29339578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of electromagnetic degree of coherence with nanoscatterers: comparison with Young's interferometer.
    Leppänen LP; Saastamoinen K; Friberg AT; Setälä T
    Opt Lett; 2015 Jun; 40(12):2898-901. PubMed ID: 26076290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial coherence properties of surface plasmon investigated by Young's slit experiment.
    Guebrou SA; Laverdant J; Symonds C; Vignoli S; Bellessa J
    Opt Lett; 2012 Jun; 37(11):2139-41. PubMed ID: 22660147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial coherence measurement of polychromatic light with modified Young's interferometer.
    Saastamoinen K; Tervo J; Turunen J; Vahimaa P; Friberg AT
    Opt Express; 2013 Feb; 21(4):4061-71. PubMed ID: 23481941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmons modulate the spatial coherence of light in Young's interference experiment.
    Gan CH; Gbur G; Visser TD
    Phys Rev Lett; 2007 Jan; 98(4):043908. PubMed ID: 17358774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial Coherence Manipulation on the Disorder-Engineered Statistical Photonic Platform.
    Liu L; Liu W; Wang F; Cheng H; Choi DY; Tian J; Cai Y; Chen S
    Nano Lett; 2022 Aug; 22(15):6342-6349. PubMed ID: 35877932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial spatial coherence and partial polarization in random evanescent fields on lossless interfaces.
    Norrman A; Setälä T; Friberg AT
    J Opt Soc Am A Opt Image Sci Vis; 2011 Mar; 28(3):391-400. PubMed ID: 21383821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-assisted two-slit transmission: Young's experiment revisited.
    Schouten HF; Kuzmin N; Dubois G; Visser TD; Gbur G; Alkemade PF; Blok H; Hooft GW; Lenstra D; Eliel ER
    Phys Rev Lett; 2005 Feb; 94(5):053901. PubMed ID: 15783641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon polariton analogue to Young's double-slit experiment.
    Zia R; Brongersma ML
    Nat Nanotechnol; 2007 Jul; 2(7):426-9. PubMed ID: 18654327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures.
    Lee KJ; Wu JW; Kim K
    Opt Express; 2013 Nov; 21(23):28817-23. PubMed ID: 24514394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Young's interference experiment with electromagnetic narrowband light.
    Partanen H; Hoenders BJ; Friberg AT; Setälä T
    J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1379-1384. PubMed ID: 30110299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent fluorescence emission by using hybrid photonic-plasmonic crystals.
    Shi L; Yuan X; Zhang Y; Hakala T; Yin S; Han D; Zhu X; Zhang B; Liu X; Törmä P; Lu W; Zi J
    Laser Photon Rev; 2014 Sep; 8(5):717-725. PubMed ID: 25793015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy.
    Mehfuz R; Chowdhury FA; Chau KJ
    Opt Express; 2012 May; 20(10):10526-37. PubMed ID: 22565678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lens coupled tunable Young's double pinhole system for hard X-ray spatial coherence characterization.
    Lyubomirskiy M; Snigireva I; Snigirev A
    Opt Express; 2016 Jun; 24(12):13679-86. PubMed ID: 27410382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons.
    Wang S; Scholes GD; Hsu LY
    J Phys Chem Lett; 2020 Aug; 11(15):5948-5955. PubMed ID: 32619095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherence properties of the photoluminescence from CdS-ZnO nanocomposite thin films.
    Vasa P; Singh BP; Ayyub P
    J Phys Condens Matter; 2005 Jan; 17(1):189-97. PubMed ID: 21690678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.