BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 29057402)

  • 21. Entropic rigidity of a crumpling network in a randomly folded thin sheet.
    Balankin AS; Huerta OS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051124. PubMed ID: 18643043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strain-Stiffening in Dynamic Supramolecular Fiber Networks.
    Fernández-Castaño Romera M; Lou X; Schill J; Ter Huurne G; Fransen PKH; Voets IK; Storm C; Sijbesma RP
    J Am Chem Soc; 2018 Dec; 140(50):17547-17555. PubMed ID: 30465604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A three-dimensional computational model of collagen network mechanics.
    Lee B; Zhou X; Riching K; Eliceiri KW; Keely PJ; Guelcher SA; Weaver AM; Jiang Y
    PLoS One; 2014; 9(11):e111896. PubMed ID: 25386649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonlinear effective-medium theory of disordered spring networks.
    Sheinman M; Broedersz CP; MacKintosh FC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021801. PubMed ID: 22463230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A model of stress and strain in the interosseous ligament of the forearm based on fiber network theory.
    Pfaeffle HJ; Fischer KJ; Srinivasa A; Manson T; Woo SL; Tomaino M
    J Biomech Eng; 2006 Oct; 128(5):725-32. PubMed ID: 16995759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stress-stabilized subisostatic fiber networks in a ropelike limit.
    Arzash S; Shivers JL; Licup AJ; Sharma A; MacKintosh FC
    Phys Rev E; 2019 Apr; 99(4-1):042412. PubMed ID: 31108669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of collagen fibers to the compressive stiffness of cartilaginous tissues.
    Römgens AM; van Donkelaar CC; Ito K
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1221-31. PubMed ID: 23443749
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictive maps for stochastic nonaffine stiffening and damage in fibrous networks.
    Abhilash AS; Zhang L; Stiefel J; Purohit PK; Joshi SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022607. PubMed ID: 25353502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RIGID GRAPH COMPRESSION: MOTIF-BASED RIGIDITY ANALYSIS FOR DISORDERED FIBER NETWORKS.
    Heroy S; Taylor D; Shi FB; Forest MG; Mucha PJ
    Multiscale Model Simul; 2018; 16(3):1283-1304. PubMed ID: 30450018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanics and nanovoid nucleation dynamics: effects of polar functionality in glassy polymer networks.
    Elder RM; Long TR; Bain ED; Lenhart JL; Sirk TW
    Soft Matter; 2018 Nov; 14(44):8895-8911. PubMed ID: 30209509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anisotropy of fibrous tissues in relation to the distribution of tensed and buckled fibers.
    Ateshian GA
    J Biomech Eng; 2007 Apr; 129(2):240-9. PubMed ID: 17408329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuum damage interactions between tension and compression in osteonal bone.
    Mirzaali MJ; Bürki A; Schwiedrzik J; Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2015 Sep; 49():355-69. PubMed ID: 26093346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and mechanics of aegagropilae fiber network.
    Verhille G; Moulinet S; Vandenberghe N; Adda-Bedia M; Le Gal P
    Proc Natl Acad Sci U S A; 2017 May; 114(18):4607-4612. PubMed ID: 28416683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strain-driven criticality underlies nonlinear mechanics of fibrous networks.
    Sharma A; Licup AJ; Rens R; Vahabi M; Jansen KA; Koenderink GH; MacKintosh FC
    Phys Rev E; 2016 Oct; 94(4-1):042407. PubMed ID: 27841637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compression Strength Mechanisms of Low-Density Fibrous Materials.
    Ketoja JA; Paunonen S; Jetsu P; Pääkkönen E
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30691101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical responses of human temporomandibular joint disc under tension and compression.
    Kang H; Bao GJ; Qi SN
    Int J Oral Maxillofac Surg; 2006 Sep; 35(9):817-21. PubMed ID: 16697140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives.
    Lin CH; Kao YC; Lin YH; Ma H; Tsay RY
    Acta Biomater; 2016 Dec; 46():101-111. PubMed ID: 27667016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology.
    Yang Y; Valentine MT
    Methods Cell Biol; 2013; 115():75-96. PubMed ID: 23973067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin.
    Leyva-Mendivil MF; Page A; Bressloff NW; Limbert G
    J Mech Behav Biomed Mater; 2015 Sep; 49():197-219. PubMed ID: 26042766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.