These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 29057402)

  • 41. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives.
    Lin CH; Kao YC; Lin YH; Ma H; Tsay RY
    Acta Biomater; 2016 Dec; 46():101-111. PubMed ID: 27667016
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology.
    Yang Y; Valentine MT
    Methods Cell Biol; 2013; 115():75-96. PubMed ID: 23973067
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin.
    Leyva-Mendivil MF; Page A; Bressloff NW; Limbert G
    J Mech Behav Biomed Mater; 2015 Sep; 49():197-219. PubMed ID: 26042766
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multi-scale strain-stiffening of semiflexible bundle networks.
    Piechocka IK; Jansen KA; Broedersz CP; Kurniawan NA; MacKintosh FC; Koenderink GH
    Soft Matter; 2016 Feb; 12(7):2145-56. PubMed ID: 26761718
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fibrin mechanical properties and their structural origins.
    Litvinov RI; Weisel JW
    Matrix Biol; 2017 Jul; 60-61():110-123. PubMed ID: 27553509
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nonaffine behavior of three-dimensional semiflexible polymer networks.
    Hatami-Marbini H
    Phys Rev E; 2016 Apr; 93():042503. PubMed ID: 27176344
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A mathematical model for the determination of forming tissue moduli in needled-nonwoven scaffolds.
    Soares JS; Zhang W; Sacks MS
    Acta Biomater; 2017 Mar; 51():220-236. PubMed ID: 28063987
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanovoid formation and mechanics: a comparison of poly(dicyclopentadiene) and epoxy networks from molecular dynamics simulations.
    Elder RM; Knorr DB; Andzelm JW; Lenhart JL; Sirk TW
    Soft Matter; 2016 May; 12(19):4418-34. PubMed ID: 27087585
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A minimal-length approach unifies rigidity in underconstrained materials.
    Merkel M; Baumgarten K; Tighe BP; Manning ML
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6560-6568. PubMed ID: 30894489
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Advances in Quantification of Meniscus Tensile Mechanics Including Nonlinearity, Yield, and Failure.
    Peloquin JM; Santare MH; Elliott DM
    J Biomech Eng; 2016 Feb; 138(2):021002. PubMed ID: 26720401
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Strain-stiffening response in transient networks formed by reverse wormlike micelles.
    Tung SH; Raghavan SR
    Langmuir; 2008 Aug; 24(16):8405-8. PubMed ID: 18652426
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two fundamental mechanisms govern the stiffening of cross-linked networks.
    Žagar G; Onck PR; van der Giessen E
    Biophys J; 2015 Mar; 108(6):1470-1479. PubMed ID: 25809259
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Scaling laws for the mechanics of loose and cohesive granular materials based on Baxter's sticky hard spheres.
    Gaume J; Löwe H; Tan S; Tsang L
    Phys Rev E; 2017 Sep; 96(3-1):032914. PubMed ID: 29347043
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A tensile machine with a novel optical load cell for soft biological tissues application.
    Faturechi R; Hashemi A; Abolfathi N
    J Med Eng Technol; 2014 Nov; 38(8):411-5. PubMed ID: 25340718
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Creating homogenous strain distribution within 3D cell-encapsulated constructs using a simple and cost-effective uniaxial tensile bioreactor: Design and validation study.
    Subramanian G; Elsaadany M; Bialorucki C; Yildirim-Ayan E
    Biotechnol Bioeng; 2017 Aug; 114(8):1878-1887. PubMed ID: 28425561
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Triggered disassembly and reassembly of actin networks induces rigidity phase transitions.
    Gurmessa BJ; Bitten N; Nguyen DT; Saleh OA; Ross JL; Das M; Robertson-Anderson RM
    Soft Matter; 2019 Feb; 15(6):1335-1344. PubMed ID: 30543255
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Method to study cell migration under uniaxial compression.
    Srivastava N; Kay RR; Kabla AJ
    Mol Biol Cell; 2017 Mar; 28(6):809-816. PubMed ID: 28122819
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Scaling of nonaffine deformation in random semiflexible fiber networks.
    Hatami-Marbini H; Picu RC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):062103. PubMed ID: 18643319
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The application of plastic compression to modulate fibrin hydrogel mechanical properties.
    Haugh MG; Thorpe SD; Vinardell T; Buckley CT; Kelly DJ
    J Mech Behav Biomed Mater; 2012 Dec; 16():66-72. PubMed ID: 23149099
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Geometry and the onset of rigidity in a disordered network.
    Vermeulen MFJ; Bose A; Storm C; Ellenbroek WG
    Phys Rev E; 2017 Nov; 96(5-1):053003. PubMed ID: 29347645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.