These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 29057405)
1. Switching enzyme specificity from phosphate to resveratrol glucosylation. Kraus M; Grimm C; Seibel J Chem Commun (Camb); 2017 Nov; 53(90):12181-12184. PubMed ID: 29057405 [TBL] [Abstract][Full Text] [Related]
2. Creating Space for Large Acceptors: Rational Biocatalyst Design for Resveratrol Glycosylation in an Aqueous System. Dirks-Hofmeister ME; Verhaeghe T; De Winter K; Desmet T Angew Chem Int Ed Engl; 2015 Aug; 54(32):9289-92. PubMed ID: 26074151 [TBL] [Abstract][Full Text] [Related]
3. Redesign of the Active Site of Sucrose Phosphorylase through a Clash-Induced Cascade of Loop Shifts. Kraus M; Grimm C; Seibel J Chembiochem; 2016 Jan; 17(1):33-6. PubMed ID: 26527586 [TBL] [Abstract][Full Text] [Related]
4. Small-molecule glucosylation by sucrose phosphorylase: structure-activity relationships for acceptor substrates revisited. Luley-Goedl C; Nidetzky B Carbohydr Res; 2010 Jul; 345(10):1492-6. PubMed ID: 20416864 [TBL] [Abstract][Full Text] [Related]
5. Engineering the specificity of trehalose phosphorylase as a general strategy for the production of glycosyl phosphates. Chen C; Van der Borght J; De Vreese R; D'hooghe M; Soetaert W; Desmet T Chem Commun (Camb); 2014 Jul; 50(58):7834-6. PubMed ID: 24909572 [TBL] [Abstract][Full Text] [Related]
6. Dissecting differential binding of fructose and phosphate as leaving group/nucleophile of glucosyl transfer catalyzed by sucrose phosphorylase. Mueller M; Nidetzky B FEBS Lett; 2007 Aug; 581(20):3814-8. PubMed ID: 17659283 [TBL] [Abstract][Full Text] [Related]
7. Assessing the regioselectivity of OleD-catalyzed glycosylation with a diverse set of acceptors. Zhou M; Hamza A; Zhan CG; Thorson JS J Nat Prod; 2013 Feb; 76(2):279-86. PubMed ID: 23360118 [TBL] [Abstract][Full Text] [Related]
8. Glucosylation of Smoke-Derived Volatiles in Grapevine (Vitis vinifera) is Catalyzed by a Promiscuous Resveratrol/Guaiacol Glucosyltransferase. Härtl K; Huang FC; Giri AP; Franz-Oberdorf K; Frotscher J; Shao Y; Hoffmann T; Schwab W J Agric Food Chem; 2017 Jul; 65(28):5681-5689. PubMed ID: 28656763 [TBL] [Abstract][Full Text] [Related]
9. Structure of cellobiose phosphorylase from Clostridium thermocellum in complex with phosphate. Bianchetti CM; Elsen NL; Fox BG; Phillips GN Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Nov; 67(Pt 11):1345-9. PubMed ID: 22102229 [TBL] [Abstract][Full Text] [Related]
10. Glucosylation mechanism of resveratrol through the mutant Q345F sucrose phosphorylase from the organism Febres-Molina C; Sánchez L; Prat-Resina X; Jaña GA Org Biomol Chem; 2022 Jul; 20(26):5270-5283. PubMed ID: 35708054 [TBL] [Abstract][Full Text] [Related]
11. Examining the role of phosphate in glycosyl transfer reactions of Cellulomonas uda cellobiose phosphorylase using D-glucal as donor substrate. Wildberger P; Brecker L; Nidetzky B Carbohydr Res; 2012 Jul; 356():224-32. PubMed ID: 22591555 [TBL] [Abstract][Full Text] [Related]
12. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum. Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539 [TBL] [Abstract][Full Text] [Related]
13. Structural dissection of the reaction mechanism of cellobiose phosphorylase. Hidaka M; Kitaoka M; Hayashi K; Wakagi T; Shoun H; Fushinobu S Biochem J; 2006 Aug; 398(1):37-43. PubMed ID: 16646954 [TBL] [Abstract][Full Text] [Related]
14. Novel transglucosylating reaction of sucrose phosphorylase to carboxylic compounds such as benzoic acid. Sugimoto K; Nomura K; Nishiura H; Ohdan K; Ohdan K; Hayashi H; Kuriki T J Biosci Bioeng; 2007 Jul; 104(1):22-9. PubMed ID: 17697979 [TBL] [Abstract][Full Text] [Related]
15. Regioselective O-glucosylation by sucrose phosphorylase: a promising route for functional diversification of a range of 1,2-propanediols. Luley-Goedl C; Sawangwan T; Brecker L; Wildberger P; Nidetzky B Carbohydr Res; 2010 Aug; 345(12):1736-40. PubMed ID: 20598292 [TBL] [Abstract][Full Text] [Related]
16. Sucrose phosphorylase from Alteromonas mediterranea: Structural insight into the regioselective α-glucosylation of (+)-catechin. Goux M; Demonceaux M; Hendrickx J; Solleux C; Lormeau E; Fredslund F; Tezé D; Offmann B; André-Miral C Biochimie; 2024 Jun; 221():13-19. PubMed ID: 38199518 [TBL] [Abstract][Full Text] [Related]
17. Structural and mutational analysis of substrate recognition in kojibiose phosphorylase. Okada S; Yamamoto T; Watanabe H; Nishimoto T; Chaen H; Fukuda S; Wakagi T; Fushinobu S FEBS J; 2014 Feb; 281(3):778-86. PubMed ID: 24255995 [TBL] [Abstract][Full Text] [Related]
18. Engineering regioselectivity of glycosyltransferase for efficient polydatin synthesis. Zhu F; Dai J; Yan Z; Xu Q; Ma M; Chen N; Liu D; Zang Y Food Chem; 2024 Dec; 460(Pt 2):140698. PubMed ID: 39098192 [TBL] [Abstract][Full Text] [Related]
19. Reversibility of a Point Mutation Induced Domain Shift: Expanding the Conformational Space of a Sucrose Phosphorylase. Kraus M; Grimm C; Seibel J Sci Rep; 2018 Jul; 8(1):10490. PubMed ID: 29993032 [TBL] [Abstract][Full Text] [Related]
20. Switching glycosyltransferase UGT Fan B; Dong W; Chen T; Chu J; He B Org Biomol Chem; 2018 Apr; 16(14):2464-2469. PubMed ID: 29561022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]