These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29057418)

  • 21. The gas-phase ozonolysis of beta-caryophyllene (C(15)H(24)). Part II: A theoretical study.
    Nguyen TL; Winterhalter R; Moortgat G; Kanawati B; Peeters J; Vereecken L
    Phys Chem Chem Phys; 2009 Jun; 11(21):4173-83. PubMed ID: 19458819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High temperature shock tube and theoretical studies on the thermal decomposition of dimethyl carbonate and its bimolecular reactions with H and D-atoms.
    Peukert SL; Sivaramakrishnan R; Michael JV
    J Phys Chem A; 2013 May; 117(18):3718-28. PubMed ID: 23510116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic Study of the Reactions of Methyl Peroxy Radical with Methanol or Hydroxyl Methyl Radical.
    Zhao Z; Song J; Su B; Wang X; Li Z
    J Phys Chem A; 2018 Jun; 122(23):5078-5088. PubMed ID: 29771540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-resolved, broadband UV-absorption spectrometry measurements of Criegee intermediate kinetics using a new photolytic precursor: unimolecular decomposition of CH
    Peltola J; Seal P; Inkilä A; Eskola A
    Phys Chem Chem Phys; 2020 Jun; 22(21):11797-11808. PubMed ID: 32347242
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The reactions of Criegee intermediates with alkenes, ozone, and carbonyl oxides.
    Vereecken L; Harder H; Novelli A
    Phys Chem Chem Phys; 2014 Mar; 16(9):4039-49. PubMed ID: 24448673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical study on the formation of Criegee intermediates from ozonolysis of pentenal: An example of trans-2-pentenal.
    Xiao W; Sun S; Yan S; Wu W; Sun J
    Chemosphere; 2022 Sep; 303(Pt 3):135142. PubMed ID: 35636604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct experimental probing and theoretical analysis of the reaction between the simplest Criegee intermediate CH
    Decker ZC; Au K; Vereecken L; Sheps L
    Phys Chem Chem Phys; 2017 Mar; 19(12):8541-8551. PubMed ID: 28288212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure-dependent reactivity of Criegee intermediates studied with spectroscopic methods.
    Jr-Min Lin J; Chao W
    Chem Soc Rev; 2017 Dec; 46(24):7483-7497. PubMed ID: 28840926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reaction kinetics of hydrogen abstraction reactions by hydroperoxyl radical from 2-methyltetrahydrofuran and 2,5-dimethyltetrahydrofuran.
    Chakravarty HK; Fernandes RX
    J Phys Chem A; 2013 Jun; 117(24):5028-41. PubMed ID: 23713783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating the Atmospheric Fate and Kinetics of OH Radical-Initiated Oxidation Reactions for Epoxybutane Isomers: Theoretical Insight.
    Daimari SR; Changmai RR; Sarma M
    J Phys Chem A; 2024 Aug; 128(30):6240-6253. PubMed ID: 39044656
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical study of the gas-phase reactions of iodine atoms ((2)P(3/2)) with H(2), H(2)O, HI, and OH.
    Canneaux S; Xerri B; Louis F; Cantrel L
    J Phys Chem A; 2010 Sep; 114(34):9270-88. PubMed ID: 20672845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Experimental and Master Equation Investigation of Kinetics of the CH
    Franzon L; Peltola J; Valiev R; Vuorio N; Kurtén T; Eskola A
    J Phys Chem A; 2023 Jan; 127(2):477-488. PubMed ID: 36602183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydroxyl radical recycling in isoprene oxidation driven by hydrogen bonding and hydrogen tunneling: the upgraded LIM1 mechanism.
    Peeters J; Müller JF; Stavrakou T; Nguyen VS
    J Phys Chem A; 2014 Sep; 118(38):8625-43. PubMed ID: 25010574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High-Level Quantum Chemical and Kinetic Analysis of Ozonolysis.
    Nguyen TL; Lee H; Matthews DA; McCarthy MC; Stanton JF
    J Phys Chem A; 2015 Jun; 119(22):5524-33. PubMed ID: 25945650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CH
    Mazarei E; Barker JR
    Phys Chem Chem Phys; 2022 Jan; 24(2):914-927. PubMed ID: 34913447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental and theoretical study of the low-temperature kinetics of the reaction of CN with CH
    West NA; Li LHD; Millar TJ; Van de Sande M; Rutter E; Blitz MA; Lehman JH; Decin L; Heard DE
    Phys Chem Chem Phys; 2023 Mar; 25(11):7719-7733. PubMed ID: 36876874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics of the Reactions of CH
    Cornwell ZA; Harrison AW; Murray C
    J Phys Chem A; 2021 Oct; 125(39):8557-8571. PubMed ID: 34554761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental and theoretical study of Criegee intermediate (CH
    Debnath A; Rajakumar B
    Phys Chem Chem Phys; 2024 Feb; 26(8):6872-6884. PubMed ID: 38332729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CO
    Kumar A; Kumar P
    Phys Chem Chem Phys; 2020 Apr; 22(13):6975-6983. PubMed ID: 32186304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Infrared Characterization of the Products and Rate Coefficient of the Reaction between Criegee Intermediate CH
    Chung CA; Hsu CW; Lee YP
    J Phys Chem A; 2022 Sep; 126(34):5738-5750. PubMed ID: 35994612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.