These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 29057534)

  • 21. An Optocatalytic Model for Semiconductor-Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts.
    Trotochaud L; Mills TJ; Boettcher SW
    J Phys Chem Lett; 2013 Mar; 4(6):931-5. PubMed ID: 26291358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination.
    Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W
    ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ligand-Engineered Quantum Dots Decorated Heterojunction Photoelectrodes for Self-Biased Solar Water Splitting.
    Cai M; Tong X; Zhao H; Li X; You Y; Wang R; Xia L; Zhou N; Wang L; Wang ZM
    Small; 2022 Nov; 18(46):e2204495. PubMed ID: 36148833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface modification of semiconductor photoelectrodes.
    Guijarro N; Prévot MS; Sivula K
    Phys Chem Chem Phys; 2015 Jun; 17(24):15655-74. PubMed ID: 26030025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characteristics of crystalline sputtered LaFeO
    Son MK; Seo H; Watanabe M; Shiratani M; Ishihara T
    Nanoscale; 2020 May; 12(17):9653-9660. PubMed ID: 32319489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface Analysis of Perovskite Oxynitride Thin Films as Photoelectrodes for Solar Water Splitting.
    Haydous F; Luo S; Wu KT; Lawley C; Döbeli M; Ishihara T; Lippert T
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37785-37796. PubMed ID: 34319688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface-Modified Ta
    Kim YW; Cha S; Kwak I; Kwon IS; Park K; Jung CS; Cha EH; Park J
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36715-36722. PubMed ID: 28976733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation.
    Chen Y; Tran PD; Boix P; Ren Y; Chiam SY; Li Z; Fu K; Wong LH; Barber J
    ACS Nano; 2015 Apr; 9(4):3829-36. PubMed ID: 25801437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoelectrochemical devices for solar water splitting - materials and challenges.
    Jiang C; Moniz SJA; Wang A; Zhang T; Tang J
    Chem Soc Rev; 2017 Jul; 46(15):4645-4660. PubMed ID: 28644493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Water oxidation at hematite photoelectrodes: the role of surface states.
    Klahr B; Gimenez S; Fabregat-Santiago F; Hamann T; Bisquert J
    J Am Chem Soc; 2012 Mar; 134(9):4294-302. PubMed ID: 22303953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Key Strategies on Cu
    Son MK
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
    Lhermitte CR; Bartlett BM
    Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Interfacial Charge Transfer on a Tungsten Trioxide Photoanode with Immobilized Molecular Iridium Catalyst.
    Tong H; Jiang Y; Zhang Q; Li J; Jiang W; Zhang D; Li N; Xia L
    ChemSusChem; 2017 Aug; 10(16):3268-3275. PubMed ID: 28612494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energetics at the Surface of Photoelectrodes and Its Influence on the Photoelectrochemical Properties.
    Thorne JE; Li S; Du C; Qin G; Wang D
    J Phys Chem Lett; 2015 Oct; 6(20):4083-8. PubMed ID: 26722780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imperfect makes perfect: defect engineering of photoelectrodes towards efficient photoelectrochemical water splitting.
    Wang X; Ma S; Liu B; Wang S; Huang W
    Chem Commun (Camb); 2023 Aug; 59(67):10044-10066. PubMed ID: 37551587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoelectrochemical Water-Splitting Using CuO-Based Electrodes for Hydrogen Production: A Review.
    Siavash Moakhar R; Hosseini-Hosseinabad SM; Masudy-Panah S; Seza A; Jalali M; Fallah-Arani H; Dabir F; Gholipour S; Abdi Y; Bagheri-Hariri M; Riahi-Noori N; Lim YF; Hagfeldt A; Saliba M
    Adv Mater; 2021 Aug; 33(33):e2007285. PubMed ID: 34117806
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring the Synthesis, Band Edge Insights, and Photoelectrochemical Water Splitting Properties of Lead Vanadates.
    Kalanur SS; Lee YJ; Seo H
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25906-25917. PubMed ID: 34043320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.