BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29057578)

  • 21. Distinct metabolic profiles in Drosophila sperm and somatic tissues revealed by two-photon NAD(P)H and FAD autofluorescence lifetime imaging.
    Wetzker C; Reinhardt K
    Sci Rep; 2019 Dec; 9(1):19534. PubMed ID: 31862926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism.
    Penjweini R; Roarke B; Alspaugh G; Gevorgyan A; Andreoni A; Pasut A; Sackett DL; Knutson JR
    Redox Biol; 2020 Jul; 34():101549. PubMed ID: 32403080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion.
    Papayan G; Petrishchev N; Galagudza M
    Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):400-8. PubMed ID: 24854770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-Photon Microscopy (TPM) and Fluorescence Lifetime Imaging Microscopy (FLIM) of Retinal Pigment Epithelium (RPE) of Mice In Vivo.
    Miura Y
    Methods Mol Biol; 2018; 1753():73-88. PubMed ID: 29564782
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of mitochondrial dysfunction due to laser damage by 2-photon FLIM microscopy.
    Alam SR; Wallrabe H; Christopher KG; Siller KH; Periasamy A
    Sci Rep; 2022 Jul; 12(1):11938. PubMed ID: 35831321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ex vivo optical metabolic measurements from cultured tissue reflect in vivo tissue status.
    Walsh AJ; Poole KM; Duvall CL; Skala MC
    J Biomed Opt; 2012 Nov; 17(11):116015. PubMed ID: 23117810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Vivo Autofluorescence Imaging of Tumor Heterogeneity in Response to Treatment.
    Shah AT; Diggins KE; Walsh AJ; Irish JM; Skala MC
    Neoplasia; 2015 Dec; 17(12):862-870. PubMed ID: 26696368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy.
    Piston DW; Masters BR; Webb WW
    J Microsc; 1995 Apr; 178(Pt 1):20-7. PubMed ID: 7745599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of metabolic changes associated with the functional development of 3D engineered tissues by non-invasive, dynamic measurement of individual cell redox ratios.
    Quinn KP; Bellas E; Fourligas N; Lee K; Kaplan DL; Georgakoudi I
    Biomaterials; 2012 Jul; 33(21):5341-8. PubMed ID: 22560200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using in vivo multiphoton fluorescence lifetime imaging to unravel disease-specific changes in the liver redox state.
    Barkauskas DS; Medley G; Liang X; Mohammed YH; Thorling CA; Wang H; Roberts MS
    Methods Appl Fluoresc; 2020 Jul; 8(3):034003. PubMed ID: 32422610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyruvate enhancement of cardiac performance: Cellular mechanisms and clinical application.
    Mallet RT; Olivencia-Yurvati AH; Bünger R
    Exp Biol Med (Maywood); 2018 Jan; 243(2):198-210. PubMed ID: 29154687
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of pent-4-enoate on cellular redox state, glycolysis and fatty acid oxidation in isolated perfused rat heart.
    Hiltunen JK; Jauhonen VP; Savolainen MJ; Hassinen IE
    Biochem J; 1978 Feb; 170(2):235-40. PubMed ID: 205208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of hair cell metabolic state in isolated cochlear preparations by two-photon microscopy.
    Tiede LM; Rocha-Sanchez SM; Hallworth R; Nichols MG; Beisel K
    J Biomed Opt; 2007; 12(2):021004. PubMed ID: 17477711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure.
    Fukushima A; Lopaschuk GD
    Biochim Biophys Acta; 2016 Dec; 1862(12):2211-2220. PubMed ID: 27479696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin.
    Fereidouni F; Bader AN; Colonna A; Gerritsen HC
    J Biophotonics; 2014 Aug; 7(8):589-96. PubMed ID: 23576407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Label-free monitoring of ambient oxygenation and redox conditions using the photodynamics of flavin compounds and transient state (TRAST) spectroscopy.
    Tornmalm J; Widengren J
    Methods; 2018 May; 140-141():178-187. PubMed ID: 29179988
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D IMAGING OF THE MITOCHONDRIAL REDOX STATE OF RAT HEARTS UNDER NORMAL AND FASTING CONDITIONS.
    Xu HN; Zhou R; Moon L; Feng M; Li LZ
    J Innov Opt Health Sci; 2014 Mar; 7(2):1350045. PubMed ID: 24917891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The glutamate dehydrogenase system and the redox state of mitochondrial free nicotinamide adenine dinucleotide in myocardium.
    Nuutinen EM; Hiltunen JK; Hassinen IE
    FEBS Lett; 1981 Jun; 128(2):356-60. PubMed ID: 7262326
    [No Abstract]   [Full Text] [Related]  

  • 39. Circadian tracking of nicotinamide cofactor levels in an immortalized suprachiasmatic nucleus cell line.
    Wise DD; Shear JB
    Neuroscience; 2004; 128(2):263-8. PubMed ID: 15350639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification of the Metabolic State in Cell-Model of Parkinson's Disease by Fluorescence Lifetime Imaging Microscopy.
    Chakraborty S; Nian FS; Tsai JW; Karmenyan A; Chiou A
    Sci Rep; 2016 Jan; 6():19145. PubMed ID: 26758390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.