BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 29057578)

  • 41. In vivo metabolic and SHG imaging for monitoring of tumor response to chemotherapy.
    Lukina MM; Dudenkova VV; Shimolina LE; Snopova LB; Zagaynova EV; Shirmanova MV
    Cytometry A; 2019 Jan; 95(1):47-55. PubMed ID: 30329217
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Potential Indexing of the Invasiveness of Breast Cancer Cells by Mitochondrial Redox Ratios.
    Sun N; Xu HN; Luo Q; Li LZ
    Adv Exp Med Biol; 2016; 923():121-127. PubMed ID: 27526133
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cardiac energetics during ischaemia and the rationale for metabolic interventions.
    Stanley WC
    Coron Artery Dis; 2001 Feb; 12 Suppl 1():S3-7. PubMed ID: 11286306
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.
    Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase.
    Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1976 Aug; 440(2):377-90. PubMed ID: 182244
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sensing cell metabolism by time-resolved autofluorescence.
    Wu Y; Zheng W; Qu JY
    Opt Lett; 2006 Nov; 31(21):3122-4. PubMed ID: 17041655
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Label-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence.
    Zeng Y; Yan B; Sun Q; Teh SK; Zhang W; Wen Z; Qu JY
    J Biomed Opt; 2013 Apr; 18(4):040504. PubMed ID: 23552632
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Myocardial lactate metabolism in fetal and newborn lambs.
    Bartelds B; Knoester H; Beaufort-Krol GC; Smid GB; Takens J; Zijlstra WG; Heymans HS; Kuipers JR
    Circulation; 1999 Apr; 99(14):1892-7. PubMed ID: 10199888
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes.
    Eng J; Lynch RM; Balaban RS
    Biophys J; 1989 Apr; 55(4):621-30. PubMed ID: 2720061
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two-photon autofluorescence microscopy of multicolor excitation.
    Li D; Zheng W; Qu JY
    Opt Lett; 2009 Jan; 34(2):202-4. PubMed ID: 19148255
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A LED-based method for monitoring NAD(P)H and FAD fluorescence in cell cultures and brain slices.
    Rösner J; Liotta A; Schmitz D; Heinemann U; Kovács R
    J Neurosci Methods; 2013 Jan; 212(2):222-7. PubMed ID: 23142181
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
    Lu W; Wang L; Chen L; Hui S; Rabinowitz JD
    Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanobiology of Cartilage Impact Via Real-Time Metabolic Imaging.
    Walsh SK; Shelley JC; Henak CR
    J Biomech Eng; 2020 Oct; 142(10):. PubMed ID: 32542333
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice.
    Umbarawan Y; Syamsunarno MRAA; Koitabashi N; Yamaguchi A; Hanaoka H; Hishiki T; Nagahata-Naito Y; Obinata H; Sano M; Sunaga H; Matsui H; Tsushima Y; Suematsu M; Kurabayashi M; Iso T
    Cardiovasc Res; 2018 Jul; 114(8):1132-1144. PubMed ID: 29554241
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Myocardial contractile and metabolic properties of familial hypertrophic cardiomyopathy caused by cardiac troponin I gene mutations: a simulation study.
    Wu B; Wang L; Liu Q; Luo Q
    Exp Physiol; 2012 Jan; 97(1):155-69. PubMed ID: 21967901
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integration of lipid utilization with Krebs cycle activity in muscle.
    Hochachka PW; Neely JR; Driedzic WR
    Fed Proc; 1977 Jun; 36(7):2009-14. PubMed ID: 193739
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Detection of microregional hypoxia in mouse cerebral cortex by two-photon imaging of endogenous NADH fluorescence.
    Polesskaya O; Sun A; Salahura G; Silva JN; Dewhurst S; Kasischke K
    J Vis Exp; 2012 Feb; (60):. PubMed ID: 22370971
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ratiometric methodology for NAD(P)H measurement in the perfused rat heart using surface fluorescence.
    Scott DA; Grotyohann LW; Cheung JY; Scaduto RC
    Am J Physiol; 1994 Aug; 267(2 Pt 2):H636-44. PubMed ID: 8067419
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Aptamer Binding on the Electron-Transfer Properties of Redox Cofactors.
    Emahi I; Gruenke PR; Baum DA
    J Mol Evol; 2015 Dec; 81(5-6):186-93. PubMed ID: 26498628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.