These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 29057587)

  • 1. In Silico Prediction of Compounds Binding to Human Plasma Proteins by QSAR Models.
    Sun L; Yang H; Li J; Wang T; Li W; Liu G; Tang Y
    ChemMedChem; 2018 Mar; 13(6):572-581. PubMed ID: 29057587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Informing the Human Plasma Protein Binding of Environmental Chemicals by Machine Learning in the Pharmaceutical Space: Applicability Domain and Limits of Predictability.
    Ingle BL; Veber BC; Nichols JW; Tornero-Velez R
    J Chem Inf Model; 2016 Nov; 56(11):2243-2252. PubMed ID: 27684444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of pseudo-equilibrium constant affords improved QSAR models of human plasma protein binding.
    Zhu XW; Sedykh A; Zhu H; Liu SS; Tropsha A
    Pharm Res; 2013 Jul; 30(7):1790-8. PubMed ID: 23568522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critically Assessing the Predictive Power of QSAR Models for Human Liver Microsomal Stability.
    Liu R; Schyman P; Wallqvist A
    J Chem Inf Model; 2015 Aug; 55(8):1566-75. PubMed ID: 26170251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting binding affinities of diverse pharmaceutical chemicals to human serum plasma proteins using QSPR modelling approaches.
    Basant N; Gupta S; Singh KP
    SAR QSAR Environ Res; 2016; 27(1):67-85. PubMed ID: 26854728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation.
    Votano JR; Parham M; Hall LM; Hall LH; Kier LB; Oloff S; Tropsha A
    J Med Chem; 2006 Nov; 49(24):7169-81. PubMed ID: 17125269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules.
    Schroeter TS; Schwaighofer A; Mika S; Ter Laak A; Suelzle D; Ganzer U; Heinrich N; Müller KR
    J Comput Aided Mol Des; 2007 Sep; 21(9):485-98. PubMed ID: 17632688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review.
    Lambrinidis G; Vallianatou T; Tsantili-Kakoulidou A
    Adv Drug Deliv Rev; 2015 Jun; 86():27-45. PubMed ID: 25819487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational prediction of plasma protein binding of cyclic peptides from small molecule experimental data using sparse modeling techniques.
    Tajimi T; Wakui N; Yanagisawa K; Yoshikawa Y; Ohue M; Akiyama Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):527. PubMed ID: 30598072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Structure - Pharmacokinetics Relationships for Plasma Protein Binding of Basic Drugs.
    Zhivkova ZD
    J Pharm Pharm Sci; 2017; 20(1):349-359. PubMed ID: 29145933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive QSAR modeling workflow, model applicability domains, and virtual screening.
    Tropsha A; Golbraikh A
    Curr Pharm Des; 2007; 13(34):3494-504. PubMed ID: 18220786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing QSAR Models with Defined Applicability Domains on PPARγ Binding Affinity Using Large Data Sets and Machine Learning Algorithms.
    Wang Z; Chen J; Hong H
    Environ Sci Technol; 2021 May; 55(10):6857-6866. PubMed ID: 33914508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Drug-Plasma Protein Binding Using Artificial Intelligence Based Algorithms.
    Kumar R; Sharma A; Siddiqui MH; Tiwari RK
    Comb Chem High Throughput Screen; 2018; 21(1):57-64. PubMed ID: 29256344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General Approach to Estimate Error Bars for Quantitative Structure-Activity Relationship Predictions of Molecular Activity.
    Liu R; Glover KP; Feasel MG; Wallqvist A
    J Chem Inf Model; 2018 Aug; 58(8):1561-1575. PubMed ID: 29949366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction.
    Liu X; Feng H; Wu J; Xia K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
    Mansouri K; Judson RS
    Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules.
    Schroeter TS; Schwaighofer A; Mika S; Ter Laak A; Suelzle D; Ganzer U; Heinrich N; Müller KR
    J Comput Aided Mol Des; 2007 Dec; 21(12):651-64. PubMed ID: 18060505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial QSAR of ambergris fragrance compounds.
    Kovatcheva A; Golbraikh A; Oloff S; Xiao YD; Zheng W; Wolschann P; Buchbauer G; Tropsha A
    J Chem Inf Comput Sci; 2004; 44(2):582-95. PubMed ID: 15032539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting human plasma protein binding of drugs using plasma protein interaction QSAR analysis (PPI-QSAR).
    Li H; Chen Z; Xu X; Sui X; Guo T; Liu W; Zhang J
    Biopharm Drug Dispos; 2011 Sep; 32(6):333-42. PubMed ID: 21800312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSAR Development for Plasma Protein Binding: Influence of the Ionization State.
    Toma C; Gadaleta D; Roncaglioni A; Toropov A; Toropova A; Marzo M; Benfenati E
    Pharm Res; 2018 Dec; 36(2):28. PubMed ID: 30591975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.