These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
391 related articles for article (PubMed ID: 29057587)
21. Plasma protein binding affinity and its relationship to molecular structure: an in-silico analysis. Gleeson MP J Med Chem; 2007 Jan; 50(1):101-12. PubMed ID: 17201414 [TBL] [Abstract][Full Text] [Related]
22. QSAR-based permeability model for drug-like compounds. Gozalbes R; Jacewicz M; Annand R; Tsaioun K; Pineda-Lucena A Bioorg Med Chem; 2011 Apr; 19(8):2615-24. PubMed ID: 21458999 [TBL] [Abstract][Full Text] [Related]
23. Multi-Layer Identification of Highly-Potent ABCA1 Up-Regulators Targeting LXRβ Using Multiple QSAR Modeling, Structural Similarity Analysis, and Molecular Docking. Chen M; Yang F; Kang J; Yang X; Lai X; Gao Y Molecules; 2016 Nov; 21(12):. PubMed ID: 27916850 [TBL] [Abstract][Full Text] [Related]
24. Assessment of prediction confidence and domain extrapolation of two structure-activity relationship models for predicting estrogen receptor binding activity. Tong W; Xie Q; Hong H; Shi L; Fang H; Perkins R Environ Health Perspect; 2004 Aug; 112(12):1249-54. PubMed ID: 15345371 [TBL] [Abstract][Full Text] [Related]
26. Quantitative structure--plasma protein binding relationships of acidic drugs. Zhivkova Z; Doytchinova I J Pharm Sci; 2012 Dec; 101(12):4627-41. PubMed ID: 22961754 [TBL] [Abstract][Full Text] [Related]
27. Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates. Shen M; Xiao Y; Golbraikh A; Gombar VK; Tropsha A J Med Chem; 2003 Jul; 46(14):3013-20. PubMed ID: 12825940 [TBL] [Abstract][Full Text] [Related]
28. Kinase-kernel models: accurate in silico screening of 4 million compounds across the entire human kinome. Martin E; Mukherjee P J Chem Inf Model; 2012 Jan; 52(1):156-70. PubMed ID: 22133092 [TBL] [Abstract][Full Text] [Related]
29. Comparative Analysis of Chemical Descriptors by Machine Learning Reveals Atomistic Insights into Solute-Lipid Interactions. Lange JJ; Anelli A; Alsenz J; Kuentz M; O'Dwyer PJ; Saal W; Wyttenbach N; Griffin BT Mol Pharm; 2024 Jul; 21(7):3343-3355. PubMed ID: 38780534 [TBL] [Abstract][Full Text] [Related]
30. A quantitative structure-activity relationship (QSAR) study of dermal absorption using theoretical molecular descriptors. Basak SC; Mills D; Mumtaz MM SAR QSAR Environ Res; 2007; 18(1-2):45-55. PubMed ID: 17365958 [TBL] [Abstract][Full Text] [Related]
31. Impact of geometry optimization methods on QSAR modelling: A case study for predicting human serum albumin binding affinity. Önlü S; Türker Saçan M SAR QSAR Environ Res; 2017 Jun; 28(6):491-509. PubMed ID: 28705017 [TBL] [Abstract][Full Text] [Related]
32. Quantitative structure-activity relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling annotation and using a large collection of drugs. Chen M; Hong H; Fang H; Kelly R; Zhou G; Borlak J; Tong W Toxicol Sci; 2013 Nov; 136(1):242-9. PubMed ID: 23997115 [TBL] [Abstract][Full Text] [Related]
33. [Quantitative structure-activity relationship model for prediction of cardiotoxicity of chemical components in traditional Chinese medicines]. Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Jun; 49(3):551-556. PubMed ID: 28628163 [TBL] [Abstract][Full Text] [Related]
34. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods. Zang Q; Rotroff DM; Judson RS J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462 [TBL] [Abstract][Full Text] [Related]
35. In Silico Prediction of Chemical Toxicity Profile Using Local Lazy Learning. Lu J; Zhang P; Zou XW; Zhao XQ; Cheng KG; Zhao YL; Bi Y; Zheng MY; Luo XM Comb Chem High Throughput Screen; 2017; 20(4):346-353. PubMed ID: 28215144 [TBL] [Abstract][Full Text] [Related]
36. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds. Khan K; Benfenati E; Roy K Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527 [TBL] [Abstract][Full Text] [Related]
37. Predicting Elimination of Small-Molecule Drug Half-Life in Pharmacokinetics Using Ensemble and Consensus Machine Learning Methods. Fan J; Shi S; Xiang H; Fu L; Duan Y; Cao D; Lu H J Chem Inf Model; 2024 Apr; 64(8):3080-3092. PubMed ID: 38563433 [TBL] [Abstract][Full Text] [Related]
38. In silico binary classification QSAR models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage. Su BH; Shen MY; Esposito EX; Hopfinger AJ; Tseng YJ J Chem Inf Model; 2010 Jul; 50(7):1304-18. PubMed ID: 20565102 [TBL] [Abstract][Full Text] [Related]
39. Current approaches for choosing feature selection and learning algorithms in quantitative structure-activity relationships (QSAR). Khan PM; Roy K Expert Opin Drug Discov; 2018 Dec; 13(12):1075-1089. PubMed ID: 30372648 [TBL] [Abstract][Full Text] [Related]
40. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Liu H; Papa E; Gramatica P Chem Res Toxicol; 2006 Nov; 19(11):1540-8. PubMed ID: 17112243 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]