BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29057658)

  • 1. PhoStar: Identifying Tandem Mass Spectra of Phosphorylated Peptides before Database Search.
    Dorl S; Winkler S; Mechtler K; Dorfer V
    J Proteome Res; 2018 Jan; 17(1):290-295. PubMed ID: 29057658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic validation of phosphopeptide identifications from tandem mass spectra.
    Lu B; Ruse C; Xu T; Park SK; Yates J
    Anal Chem; 2007 Feb; 79(4):1301-10. PubMed ID: 17297928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective Leveraging of Targeted Search Spaces for Improving Peptide Identification in Tandem Mass Spectrometry Based Proteomics.
    Shanmugam AK; Nesvizhskii AI
    J Proteome Res; 2015 Dec; 14(12):5169-78. PubMed ID: 26569054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic validation of phosphopeptide identifications by the MS2/MS3 target-decoy search strategy.
    Jiang X; Han G; Feng S; Jiang X; Ye M; Yao X; Zou H
    J Proteome Res; 2008 Apr; 7(4):1640-9. PubMed ID: 18314942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prophossi: automating expert validation of phosphopeptide-spectrum matches from tandem mass spectrometry.
    Martin DM; Nett IR; Vandermoere F; Barber JD; Morrice NA; Ferguson MA
    Bioinformatics; 2010 Sep; 26(17):2153-9. PubMed ID: 20651112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale Reanalysis of Publicly Available HeLa Cell Proteomics Data in the Context of the Human Proteome Project.
    Robin T; Bairoch A; Müller M; Lisacek F; Lane L
    J Proteome Res; 2018 Dec; 17(12):4160-4170. PubMed ID: 30175587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doubling down on phosphorylation as a variable peptide modification.
    Cooper B
    Proteomics; 2016 Sep; 16(18):2444-7. PubMed ID: 27198645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein Identification from Tandem Mass Spectra by Database Searching.
    Edwards NJ
    Methods Mol Biol; 2017; 1558():357-380. PubMed ID: 28150247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding tandem mass spectral libraries of phosphorylated peptides: advances and applications.
    Hu Y; Lam H
    J Proteome Res; 2013 Dec; 12(12):5971-7. PubMed ID: 24125593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem Mass Spectrum Identification via Cascaded Search.
    Kertesz-Farkas A; Keich U; Noble WS
    J Proteome Res; 2015 Aug; 14(8):3027-38. PubMed ID: 26084232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SimPhospho: a software tool enabling confident phosphosite assignment.
    Suni V; Suomi T; Tsubosaka T; Imanishi SY; Elo LL; Corthals GL
    Bioinformatics; 2018 Aug; 34(15):2690-2692. PubMed ID: 29596608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the identification rate of endogenous peptides using electron transfer dissociation and collision-induced dissociation.
    Hayakawa E; Menschaert G; De Bock PJ; Luyten W; Gevaert K; Baggerman G; Schoofs L
    J Proteome Res; 2013 Dec; 12(12):5410-21. PubMed ID: 24032530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colander: a probability-based support vector machine algorithm for automatic screening for CID spectra of phosphopeptides prior to database search.
    Lu B; Ruse CI; Yates JR
    J Proteome Res; 2008 Aug; 7(8):3628-34. PubMed ID: 18563924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting Modifications in Proteomics Experiments with Param-Medic.
    May DH; Tamura K; Noble WS
    J Proteome Res; 2019 Apr; 18(4):1902-1906. PubMed ID: 30714740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deephos: predicted spectral database search for TMT-labeled phosphopeptides and its false discovery rate estimation.
    Na S; Choi H; Paek E
    Bioinformatics; 2022 May; 38(11):2980-2987. PubMed ID: 35441674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charger: combination of signal processing and statistical learning algorithms for precursor charge-state determination from electron-transfer dissociation spectra.
    Sadygov RG; Hao Z; Huhmer AF
    Anal Chem; 2008 Jan; 80(2):376-86. PubMed ID: 18081262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical models for protein validation using tandem mass spectral data and protein amino acid sequence databases.
    Sadygov RG; Liu H; Yates JR
    Anal Chem; 2004 Mar; 76(6):1664-71. PubMed ID: 15018565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein identification from tandem mass spectra by database searching.
    Edwards NJ
    Methods Mol Biol; 2011; 694():119-38. PubMed ID: 21082432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PTMTreeSearch: a novel two-stage tree-search algorithm with pruning rules for the identification of post-translational modification of proteins in MS/MS spectra.
    Kertész-Farkas A; Reiz B; Vera R; Myers MP; Pongor S
    Bioinformatics; 2014 Jan; 30(2):234-41. PubMed ID: 24215026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.