BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 29057710)

  • 1. Integrative cancer pharmacogenomics to establish drug mechanism of action: drug repurposing.
    El-Hachem N; Ba-Alawi W; Smith I; Mer AS; Haibe-Kains B
    Pharmacogenomics; 2017 Nov; 18(16):1469-1472. PubMed ID: 29057710
    [No Abstract]   [Full Text] [Related]  

  • 2. Leveraging Big Data to Transform Drug Discovery.
    Glicksberg BS; Li L; Chen R; Dudley J; Chen B
    Methods Mol Biol; 2019; 1939():91-118. PubMed ID: 30848458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Computational Functional Genomics in Drug Discovery and Repurposing for Analgesic Indications.
    Lötsch J; Kringel D
    Clin Pharmacol Ther; 2018 Jun; 103(6):975-978. PubMed ID: 29350398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repurposing Drugs in Oncology: Next Steps.
    Verbaanderd C; Meheus L; Huys I; Pantziarka P
    Trends Cancer; 2017 Aug; 3(8):543-546. PubMed ID: 28780930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine and deep learning approaches for cancer drug repurposing.
    Issa NT; Stathias V; Schürer S; Dakshanamurthy S
    Semin Cancer Biol; 2021 Jan; 68():132-142. PubMed ID: 31904426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic integration of biomedical knowledge prioritizes drugs for repurposing.
    Himmelstein DS; Lizee A; Hessler C; Brueggeman L; Chen SL; Hadley D; Green A; Khankhanian P; Baranzini SE
    Elife; 2017 Sep; 6():. PubMed ID: 28936969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of a Pipeline Using Disease-Disease Associations for Computational Drug Repurposing.
    Balasundaram P; Kanagavelu R; James N; Maiti S; Veerappapillai S; Karuppaswamy R
    Methods Mol Biol; 2019; 1903():129-148. PubMed ID: 30547440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconciling multiple connectivity scores for drug repurposing.
    Samart K; Tuyishime P; Krishnan A; Ravi J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34013329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prioritization of candidate cancer drugs based on a drug functional similarity network constructed by integrating pathway activities and drug activities.
    Di J; Zheng B; Kong Q; Jiang Y; Liu S; Yang Y; Han X; Sheng Y; Zhang Y; Cheng L; Han J
    Mol Oncol; 2019 Oct; 13(10):2259-2277. PubMed ID: 31408580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic Data Mining and Repurposing for Computational Drug Discovery.
    Wang Y; Yella J; Jegga AG
    Methods Mol Biol; 2019; 1903():73-95. PubMed ID: 30547437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide and Phenome-wide Approaches to Understand Variable Drug Actions in Electronic Health Records.
    Robinson JR; Denny JC; Roden DM; Van Driest SL
    Clin Transl Sci; 2018 Mar; 11(2):112-122. PubMed ID: 29148204
    [No Abstract]   [Full Text] [Related]  

  • 13. Computational functional genomics-based approaches in analgesic drug discovery and repurposing.
    Lippmann C; Kringel D; Ultsch A; Lötsch J
    Pharmacogenomics; 2018 Jun; 19(9):783-797. PubMed ID: 29792109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug Selection in the Genomic Age: Application of the Coexpression Extrapolation Principle for Drug Repositioning in Cancer Therapy.
    Gustafson DL; Fowles JS; Brown KC; Theodorescu D
    Assay Drug Dev Technol; 2015 Dec; 13(10):623-7. PubMed ID: 26690765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing.
    Zhao K; So HC
    Methods Mol Biol; 2019; 1903():219-237. PubMed ID: 30547445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Methods for Drug Repurposing.
    Rapicavoli RV; Alaimo S; Ferro A; Pulvirenti A
    Adv Exp Med Biol; 2022; 1361():119-141. PubMed ID: 35230686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rethinking Drug Repositioning and Development with Artificial Intelligence, Machine Learning, and Omics.
    Koromina M; Pandi MT; Patrinos GP
    OMICS; 2019 Nov; 23(11):539-548. PubMed ID: 31651216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Drug Repositioning: A Lateral Approach to Traditional Drug Discovery?
    Sahu NU; Kharkar PS
    Curr Top Med Chem; 2016; 16(19):2069-77. PubMed ID: 26881717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Machine-Learning-Based Drug Repurposing Approach Using Baseline Regularization.
    Kuang Z; Bao Y; Thomson J; Caldwell M; Peissig P; Stewart R; Willett R; Page D
    Methods Mol Biol; 2019; 1903():255-267. PubMed ID: 30547447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network-Based Drug Repositioning: Approaches, Resources, and Research Directions.
    Alaimo S; Pulvirenti A
    Methods Mol Biol; 2019; 1903():97-113. PubMed ID: 30547438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.