These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 29057950)
41. Imiquimod induces apoptosis of human melanocytes. Kim CH; Ahn JH; Kang SU; Hwang HS; Lee MH; Pyun JH; Kang HY Arch Dermatol Res; 2010 May; 302(4):301-6. PubMed ID: 20033192 [TBL] [Abstract][Full Text] [Related]
42. Dysregulated autophagy increased melanocyte sensitivity to H He Y; Li S; Zhang W; Dai W; Cui T; Wang G; Gao T; Li C Sci Rep; 2017 Feb; 7():42394. PubMed ID: 28186139 [TBL] [Abstract][Full Text] [Related]
43. [Evaluation of an antioxidant and mitochondria-stimulating cream formula on the skin of patients with stable common vitiligo]. Rojas-Urdaneta JE; Poleo-Romero AG Invest Clin; 2007 Mar; 48(1):21-31. PubMed ID: 17432541 [TBL] [Abstract][Full Text] [Related]
44. Possible roles of B lymphocyte activating factor of the tumour necrosis factor family in vitiligo autoimmunity. Lin X; Tian H; Xianmin M Med Hypotheses; 2011 Mar; 76(3):339-42. PubMed ID: 21075543 [TBL] [Abstract][Full Text] [Related]
45. Immunohistochemical expression of aberrant Notch-1 signaling in vitiligo: an implication for pathogenesis. Seleit I; Bakry OA; Abdou AG; Dawoud NM Ann Diagn Pathol; 2014 Jun; 18(3):117-24. PubMed ID: 24560443 [TBL] [Abstract][Full Text] [Related]
46. Low-energy helium-neon laser induces melanocyte proliferation via interaction with type IV collagen: visible light as a therapeutic option for vitiligo. Lan CC; Wu CS; Chiou MH; Chiang TY; Yu HS Br J Dermatol; 2009 Aug; 161(2):273-80. PubMed ID: 19438447 [TBL] [Abstract][Full Text] [Related]
47. IL-17 induces cellular stress microenvironment of melanocytes to promote autophagic cell apoptosis in vitiligo. Zhou J; An X; Dong J; Wang Y; Zhong H; Duan L; Ling J; Ping F; Shang J FASEB J; 2018 Sep; 32(9):4899-4916. PubMed ID: 29613836 [TBL] [Abstract][Full Text] [Related]
48. Less keratinocyte-derived factors related to more keratinocyte apoptosis in depigmented than normally pigmented suction-blistered epidermis may cause passive melanocyte death in vitiligo. Lee AY; Kim NH; Choi WI; Youm YH J Invest Dermatol; 2005 May; 124(5):976-83. PubMed ID: 15854039 [TBL] [Abstract][Full Text] [Related]
49. Possible patterns of epidermal melanocyte disappearance in nonsegmental vitiligo: a clinicopathological study. Benzekri L; Hmamouchi I; Gauthier Y Br J Dermatol; 2015 Feb; 172(2):331-6. PubMed ID: 24902987 [TBL] [Abstract][Full Text] [Related]
50. Endothelin-1 and its A and B receptors: are they possibly involved in vitiligo? Aly DG; Salem SA; Abdel-Hamid MF; Youssef NS; El Shaer MA Acta Dermatovenerol Croat; 2013; 21(1):12-8. PubMed ID: 23683481 [TBL] [Abstract][Full Text] [Related]
51. Water Buffalo (Bubalus bubalis) as a spontaneous animal model of Vitiligo. Singh VP; Motiani RK; Singh A; Malik G; Aggarwal R; Pratap K; Wani MR; Gokhale SB; Natarajan VT; Gokhale RS Pigment Cell Melanoma Res; 2016 Jul; 29(4):465-9. PubMed ID: 27124831 [TBL] [Abstract][Full Text] [Related]
52. Potent effects of peracetylated (-)-epigallocatechin-3-gallate against hydrogen peroxide-induced damage in human epidermal melanocytes via attenuation of oxidative stress and apoptosis. Ning W; Wang S; Liu D; Fu L; Jin R; Xu A Clin Exp Dermatol; 2016 Aug; 41(6):616-24. PubMed ID: 27339454 [TBL] [Abstract][Full Text] [Related]
53. Mapping architectural and transcriptional alterations in non-lesional and lesional epidermis in vitiligo. Singh A; Gotherwal V; Junni P; Vijayan V; Tiwari M; Ganju P; Kumar A; Sharma P; Fatima T; Gupta A; Holla A; Kar HK; Khanna S; Thukral L; Malik G; Natarajan K; Gadgil CJ; Lahesmaa R; Natarajan VT; Rani R; Gokhale RS Sci Rep; 2017 Aug; 7(1):9860. PubMed ID: 28852211 [TBL] [Abstract][Full Text] [Related]
54. A comparative study of mitochondrial ultrastructure in melanocytes from perilesional vitiligo skin and perilesional halo nevi skin. Ding GZ; Zhao WE; Li X; Gong QL; Lu Y Arch Dermatol Res; 2015 Apr; 307(3):281-9. PubMed ID: 25672813 [TBL] [Abstract][Full Text] [Related]
55. Cardiolipin content is involved in liver mitochondrial energy wasting associated with cancer-induced cachexia without the involvement of adenine nucleotide translocase. Julienne CM; Tardieu M; Chevalier S; Pinault M; Bougnoux P; Labarthe F; Couet C; Servais S; Dumas JF Biochim Biophys Acta; 2014 May; 1842(5):726-33. PubMed ID: 24534708 [TBL] [Abstract][Full Text] [Related]
56. Reduced Mitochondrial Function in Human Huntington Disease Lymphoblasts is Not Due to Alterations in Cardiolipin Metabolism or Mitochondrial Supercomplex Assembly. Mejia EM; Chau S; Sparagna GC; Sipione S; Hatch GM Lipids; 2016 May; 51(5):561-9. PubMed ID: 26846325 [TBL] [Abstract][Full Text] [Related]
57. Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. Maresca V; Roccella M; Roccella F; Camera E; Del Porto G; Passi S; Grammatico P; Picardo M J Invest Dermatol; 1997 Sep; 109(3):310-3. PubMed ID: 9284096 [TBL] [Abstract][Full Text] [Related]
58. Differences in the melanosome distribution within the epidermal melanin units and its association with the impairing background of leukoderma in vitiligo and halo nevi: a retrospective study. Xiong XX; Ding GZ; Zhao WE; Li X; Ling YT; Sun L; Gong QL; Lu Y Arch Dermatol Res; 2017 Jul; 309(5):323-333. PubMed ID: 28314912 [TBL] [Abstract][Full Text] [Related]
59. Leukoderma induced by rhododendrol is different from leukoderma of vitiligo in pathogenesis: A novel comparative morphological study. Tsutsumi R; Sugita K; Abe Y; Hozumi Y; Suzuki T; Yamada N; Yoshida Y; Yamamoto O J Cutan Pathol; 2019 Feb; 46(2):123-129. PubMed ID: 30456919 [TBL] [Abstract][Full Text] [Related]
60. Culture of melanocytes obtained from normal and vitiligo subjects. Im S; Hann SK; Park YK; Kim HI Yonsei Med J; 1992 Dec; 33(4):344-50. PubMed ID: 1309014 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]