These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 29057953)

  • 1. Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates.
    Simmons TJ; Frandsen KEH; Ciano L; Tryfona T; Lenfant N; Poulsen JC; Wilson LFL; Tandrup T; Tovborg M; Schnorr K; Johansen KS; Henrissat B; Walton PH; Lo Leggio L; Dupree P
    Nat Commun; 2017 Oct; 8(1):1064. PubMed ID: 29057953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Six Lytic Polysaccharide Monooxygenases from
    Tõlgo M; Hegnar OA; Østby H; Várnai A; Vilaplana F; Eijsink VGH; Olsson L
    Appl Environ Microbiol; 2022 Mar; 88(6):e0009622. PubMed ID: 35080911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligosaccharide Binding and Thermostability of Two Related AA9 Lytic Polysaccharide Monooxygenases.
    Tandrup T; Tryfona T; Frandsen KEH; Johansen KS; Dupree P; Lo Leggio L
    Biochemistry; 2020 Sep; 59(36):3347-3358. PubMed ID: 32818374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unliganded and substrate bound structures of the cellooligosaccharide active lytic polysaccharide monooxygenase LsAA9A at low pH.
    Frandsen KEH; Poulsen JN; Tandrup T; Lo Leggio L
    Carbohydr Res; 2017 Aug; 448():187-190. PubMed ID: 28364950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the molecular determinants driving the substrate specificity of fungal lytic polysaccharide monooxygenases (LPMOs).
    Frandsen KEH; Haon M; Grisel S; Henrissat B; Lo Leggio L; Berrin JG
    J Biol Chem; 2021; 296():100086. PubMed ID: 33199373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific Xylan Activity Revealed for AA9 Lytic Polysaccharide Monooxygenases of the Thermophilic Fungus
    Hüttner S; Várnai A; Petrović DM; Bach CX; Kim Anh DT; Thanh VN; Eijsink VGH; Larsbrink J; Olsson L
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa.
    Hegnar OA; Østby H; Petrović DM; Olsson L; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2021 Nov; 87(24):e0165221. PubMed ID: 34613755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.
    Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M
    Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of two family AA9 LPMOs from Aspergillus tamarii with distinct activities on xyloglucan reveals structural differences linked to cleavage specificity.
    Monclaro AV; Petrović DM; Alves GSC; Costa MMC; Midorikawa GEO; Miller RNG; Filho EXF; Eijsink VGH; Várnai A
    PLoS One; 2020; 15(7):e0235642. PubMed ID: 32640001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability.
    Kracher D; Andlar M; Furtmüller PG; Ludwig R
    J Biol Chem; 2018 Feb; 293(5):1676-1687. PubMed ID: 29259126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a bacterial copper-dependent lytic polysaccharide monooxygenase with an unusual second coordination sphere.
    Munzone A; El Kerdi B; Fanuel M; Rogniaux H; Ropartz D; Réglier M; Royant A; Simaan AJ; Decroos C
    FEBS J; 2020 Aug; 287(15):3298-3314. PubMed ID: 31903721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases.
    Forsberg Z; Mackenzie AK; Sørlie M; Røhr ÅK; Helland R; Arvai AS; Vaaje-Kolstad G; Eijsink VG
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8446-51. PubMed ID: 24912171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and at least one is active on cellulose and xyloglucan.
    Jagadeeswaran G; Gainey L; Prade R; Mort AJ
    Appl Microbiol Biotechnol; 2016 May; 100(10):4535-47. PubMed ID: 27075737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases.
    Frandsen KE; Simmons TJ; Dupree P; Poulsen JC; Hemsworth GR; Ciano L; Johnston EM; Tovborg M; Johansen KS; von Freiesleben P; Marmuse L; Fort S; Cottaz S; Driguez H; Henrissat B; Lenfant N; Tuna F; Baldansuren A; Davies GJ; Lo Leggio L; Walton PH
    Nat Chem Biol; 2016 Apr; 12(4):298-303. PubMed ID: 26928935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural diversity of lytic polysaccharide monooxygenases.
    Vaaje-Kolstad G; Forsberg Z; Loose JS; Bissaro B; Eijsink VG
    Curr Opin Struct Biol; 2017 Jun; 44():67-76. PubMed ID: 28086105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and Specific Peroxygenase Reactions Catalyzed by Fungal Mono-Copper Enzymes.
    Rieder L; Stepnov AA; Sørlie M; Eijsink VGH
    Biochemistry; 2021 Nov; 60(47):3633-3643. PubMed ID: 34738811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of three seemingly similar lytic polysaccharide monooxygenases from
    Petrović DM; Várnai A; Dimarogona M; Mathiesen G; Sandgren M; Westereng B; Eijsink VGH
    J Biol Chem; 2019 Oct; 294(41):15068-15081. PubMed ID: 31431506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and molecular dynamics studies of a C1-oxidizing lytic polysaccharide monooxygenase from Heterobasidion irregulare reveal amino acids important for substrate recognition.
    Liu B; Kognole AA; Wu M; Westereng B; Crowley MF; Kim S; Dimarogona M; Payne CM; Sandgren M
    FEBS J; 2018 Jun; 285(12):2225-2242. PubMed ID: 29660793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of a lytic polysaccharide monooxygenase from Schizophyllum commune that degrades non-crystalline substrates.
    Østby H; Christensen IA; Hennum K; Várnai A; Buchinger E; Grandal S; Courtade G; Hegnar OA; Aachmann FL; Eijsink VGH
    Sci Rep; 2023 Oct; 13(1):17373. PubMed ID: 37833388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery and characterization of a new family of lytic polysaccharide monooxygenases.
    Hemsworth GR; Henrissat B; Davies GJ; Walton PH
    Nat Chem Biol; 2014 Feb; 10(2):122-6. PubMed ID: 24362702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.