These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29058002)

  • 1. A microfluidic microinjector for toxicological and developmental studies in Drosophila embryos.
    Ghaemi R; Arefi P; Stosic A; Acker M; Raza Q; Roger Jacobs J; Selvaganapathy PR
    Lab Chip; 2017 Nov; 17(22):3898-3908. PubMed ID: 29058002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic system with integrated microinjector for automated Drosophila embryo injection.
    Delubac D; Highley CB; Witzberger-Krajcovic M; Ayoob JC; Furbee EC; Minden JS; Zappe S
    Lab Chip; 2012 Nov; 12(22):4911-9. PubMed ID: 23042419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microinjection in a microfluidic format using flexible and compliant channels and electroosmotic dosage control.
    Noori A; Selvaganapathy PR; Wilson J
    Lab Chip; 2009 Nov; 9(22):3202-11. PubMed ID: 19865726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic self-assembly of live Drosophila embryos for versatile high-throughput analysis of embryonic morphogenesis.
    Dagani GT; Monzo K; Fakhoury JR; Chen CC; Sisson JC; Zhang X
    Biomed Microdevices; 2007 Oct; 9(5):681-94. PubMed ID: 17508286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Device for Microinjection of
    Ghaemi R; Tong J; Gupta BP; Selvaganapathy PR
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32168862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile size-dependent sorting of C. elegans nematodes and embryos using a tunable microfluidic filter structure.
    Dong L; Cornaglia M; Lehnert T; Gijs MA
    Lab Chip; 2016 Feb; 16(3):574-85. PubMed ID: 26755420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated MEMS-based Drosophila embryo injection system for high-throughput RNAi screens.
    Zappe S; Fish M; Scott MP; Solgaard O
    Lab Chip; 2006 Aug; 6(8):1012-9. PubMed ID: 16874371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the local temperature in space and time around a developing Drosophila embryo in a microfluidic device.
    Lucchetta EM; Munson MS; Ismagilov RF
    Lab Chip; 2006 Feb; 6(2):185-90. PubMed ID: 16450026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permeabilization of Drosophila embryos for introduction of small molecules.
    Rand MD; Kearney AL; Dao J; Clason T
    Insect Biochem Mol Biol; 2010 Nov; 40(11):792-804. PubMed ID: 20727969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fish in chips: an automated microfluidic device to study drug dynamics in vivo using zebrafish embryos.
    Zheng C; Zhou H; Liu X; Pang Y; Zhang B; Huang Y
    Chem Commun (Camb); 2014 Jan; 50(8):981-4. PubMed ID: 24305733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment.
    Vega-Alvarez S; Herrera A; Rinaldi C; Carrero-Martínez FA
    Int J Nanomedicine; 2014; 9():2031-41. PubMed ID: 24790441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative mechanical evaluation and analysis of Drosophila embryos through the stages of embryogenesis.
    Shen Y; Zhang R; Cozen S; Xi N; Wejinya UC; Hao L
    Birth Defects Res C Embryo Today; 2008 Sep; 84(3):204-14. PubMed ID: 18773458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of localized hypoxia on Drosophila embryo development.
    Wang Z; Oppegard SC; Eddington DT; Cheng J
    PLoS One; 2017; 12(9):e0185267. PubMed ID: 28934338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput mechanotransduction in Drosophila embryos with mesofluidics.
    Shorr AZ; Sönmez UM; Minden JS; LeDuc PR
    Lab Chip; 2019 Mar; 19(7):1141-1152. PubMed ID: 30778467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force measurement and mechanical characterization of living Drosophila embryos for human medical study.
    Shen Y; Wejinya UC; Xi N; Pomeroy CA
    Proc Inst Mech Eng H; 2007 Feb; 221(2):99-112. PubMed ID: 17385565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies.
    Chang CW; Cheng YJ; Tu M; Chen YH; Peng CC; Liao WH; Tung YC
    Lab Chip; 2014 Oct; 14(19):3762-72. PubMed ID: 25096368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicompartmented microfluidic device for characterization of dose-dependent cadmium cytotoxicity in BALB/3T3 fibroblast cells.
    Mahto SK; Yoon TH; Shin H; Rhee SW
    Biomed Microdevices; 2009 Apr; 11(2):401-11. PubMed ID: 18982453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure stabilizer for reproducible picoinjection in droplet microfluidic systems.
    Rhee M; Light YK; Yilmaz S; Adams PD; Saxena D; Meagher RJ; Singh AK
    Lab Chip; 2014 Dec; 14(23):4533-9. PubMed ID: 25270338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic valve with cored glass microneedle for microinjection.
    Lee S; Jeong W; Beebe DJ
    Lab Chip; 2003 Aug; 3(3):164-7. PubMed ID: 15100768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct microinjection of substances in penetration-sensitive embryos.
    Kühtreiber WM; Serras F
    Differentiation; 1987; 34(2):156-9. PubMed ID: 3622951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.