BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29058093)

  • 1. Transcriptome analysis reveals the genetic basis underlying the biosynthesis of volatile oil, gingerols, and diarylheptanoids in ginger (Zingiber officinale Rosc.).
    Jiang Y; Liao Q; Zou Y; Liu Y; Lan J
    Bot Stud; 2017 Oct; 58(1):41. PubMed ID: 29058093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined Metabolome and Transcriptome Analyses of Young, Mature, and Old Rhizome Tissues of
    Liu H; Yang H; Zhao T; Lin C; Li Y; Zhang X; Ye Y; Liao J
    Front Genet; 2021; 12():795201. PubMed ID: 34956334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome Analysis Provides Insights into Gingerol Biosynthesis in Ginger (
    Jiang Y; Huang M; Wisniewski M; Li H; Zhang M; Tao X; Liu Y; Zou Y
    Plant Genome; 2018 Nov; 11(3):. PubMed ID: 30512040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peroxisomal KAT2 (3-ketoacyl-CoA thiolase 2) gene has a key role in gingerol biosynthesis in ginger (
    Sreeja S; Shylaja MR; Nazeem PA; Mathew D
    J Plant Biochem Biotechnol; 2023 Jan; ():1-16. PubMed ID: 36685987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents.
    Zhang M; Zhao R; Wang D; Wang L; Zhang Q; Wei S; Lu F; Peng W; Wu C
    Phytother Res; 2021 Feb; 35(2):711-742. PubMed ID: 32954562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of curcuminoids and gingerols in turmeric (Curcuma longa) and ginger (Zingiber officinale): identification of curcuminoid synthase and hydroxycinnamoyl-CoA thioesterases.
    Ramirez-Ahumada Mdel C; Timmermann BN; Gang DR
    Phytochemistry; 2006 Sep; 67(18):2017-29. PubMed ID: 16890967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genome assembly of ginger (Zingiber officinale Roscoe) provides insights into genome evolution and 6-gingerol biosynthesis.
    Chen Z; Zhang L; Lv Y; Qu S; Liu W; Wang K; Gao S; Zhu F; Cao B; Xu K
    Plant J; 2024 May; 118(3):682-695. PubMed ID: 38251816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ginger and turmeric expressed sequence tags identify signature genes for rhizome identity and development and the biosynthesis of curcuminoids, gingerols and terpenoids.
    Koo HJ; McDowell ET; Ma X; Greer KA; Kapteyn J; Xie Z; Descour A; Kim H; Yu Y; Kudrna D; Wing RA; Soderlund CA; Gang DR
    BMC Plant Biol; 2013 Feb; 13():27. PubMed ID: 23410187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Chemical Signatures of Water Extract of
    Lu F; Cai H; Li S; Xie W; Sun R
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic transcriptome profiling provides insights into rhizome enlargement in ginger (Zingiber officinale Rosc.).
    Ren Y; Li WB; Li ZX; Zhang WL; Jue DW; Xing HT; Li HL; Li Q
    PLoS One; 2023; 18(7):e0287969. PubMed ID: 37450442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the transcriptomes of ginger (Zingiber officinale Rosc.) and mango ginger (Curcuma amada Roxb.) in response to the bacterial wilt infection.
    Prasath D; Karthika R; Habeeba NT; Suraby EJ; Rosana OB; Shaji A; Eapen SJ; Deshpande U; Anandaraj M
    PLoS One; 2014; 9(6):e99731. PubMed ID: 24940878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of hydroxycinnamoyl-CoA thioesterases in ginger (Zingiber officinale Rosc.) and turmeric (Curcuma longa L.) by lipase inhibitors.
    Flores-Sanchez IJ; Gang DR
    Plant Physiol Biochem; 2013 Nov; 72():46-53. PubMed ID: 23510578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De Novo Transcriptome Assembly and Characterization of Lithospermum officinale to Discover Putative Genes Involved in Specialized Metabolites Biosynthesis.
    Rai A; Nakaya T; Shimizu Y; Rai M; Nakamura M; Suzuki H; Saito K; Yamazaki M
    Planta Med; 2018 Aug; 84(12-13):920-934. PubMed ID: 29843181
    [No Abstract]   [Full Text] [Related]  

  • 14. Ginger from Farmyard to Town: Nutritional and Pharmacological Applications.
    Unuofin JO; Masuku NP; Paimo OK; Lebelo SL
    Front Pharmacol; 2021; 12():779352. PubMed ID: 34899343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De Novo transcriptome assembly of Zingiber officinale cv. Suruchi of Odisha.
    Gaur M; Das A; Sahoo RK; Kar B; Nayak S; Subudhi E
    Genom Data; 2016 Sep; 9():87-8. PubMed ID: 27408817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated non-targeted metabolomics and transcriptomics reveals the browning mechanism of scraped ginger (Zingiber officinale Rosc.).
    Tong M; Ding Y; Yu H; Zhang W; Wu D
    J Food Sci; 2024 Jun; 89(6):3260-3275. PubMed ID: 38685879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First report of
    Hajihassani A; Ye W; Hampton BB
    J Nematol; 2019; 51():1-3. PubMed ID: 31088018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic profiling of in vitro micropropagated and conventionally greenhouse grown ginger (Zingiber officinale).
    Ma X; Gang DR
    Phytochemistry; 2006 Oct; 67(20):2239-55. PubMed ID: 16963091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations.
    Yücel Ç; Karatoprak GŞ; Açıkara ÖB; Akkol EK; Barak TH; Sobarzo-Sánchez E; Aschner M; Shirooie S
    Front Pharmacol; 2022; 13():902551. PubMed ID: 36133811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacokinetics of 10-gingerol and 6-shogaol in the plasma of healthy subjects treated with red ginger (
    Levita J; Syafitri DM; Supu RD; Mutakin M; Megantara S; Febrianti M; Diantini A
    Biomed Rep; 2018 Dec; 9(6):474-482. PubMed ID: 30546874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.