BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 29058183)

  • 1. Probing Subunits Interactions in K
    Devaraneni P; Rex EA; Shyng SL
    Methods Mol Biol; 2018; 1684():51-61. PubMed ID: 29058183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of a Pancreatic ATP-Sensitive Potassium Channel.
    Li N; Wu JX; Ding D; Cheng J; Gao N; Chen L
    Cell; 2017 Jan; 168(1-2):101-110.e10. PubMed ID: 28086082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfonylurea receptors regulate the channel pore in ATP-sensitive potassium channels via an intersubunit salt bridge.
    Lodwick D; Rainbow RD; Rubaiy HN; Al Johi M; Vuister GW; Norman RI
    Biochem J; 2014 Dec; 464(3):343-54. PubMed ID: 25236767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and purification of ATP-sensitive potassium channel particles for cryo-electron microscopy.
    Driggers CM; Shyng SL
    Methods Enzymol; 2021; 653():121-150. PubMed ID: 34099169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels.
    Wu JX; Ding D; Wang M; Kang Y; Zeng X; Chen L
    Protein Cell; 2018 Jun; 9(6):553-567. PubMed ID: 29594720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatidylinositol 4,5-biphosphate (PIP2) modulates syntaxin-1A binding to sulfonylurea receptor 2A to regulate cardiac ATP-sensitive potassium (KATP) channels.
    Xie L; Liang T; Kang Y; Lin X; Sobbi R; Xie H; Chao C; Backx P; Feng ZP; Shyng SL; Gaisano HY
    J Mol Cell Cardiol; 2014 Oct; 75():100-10. PubMed ID: 25073062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-diabetic drug binding site in a mammalian K
    Martin GM; Kandasamy B; DiMaio F; Yoshioka C; Shyng SL
    Elife; 2017 Oct; 6():. PubMed ID: 29035201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular structure of human KATP in complex with ATP and ADP.
    Lee KPK; Chen J; MacKinnon R
    Elife; 2017 Dec; 6():. PubMed ID: 29286281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testing the bipartite model of the sulfonylurea receptor binding site: binding of A-, B-, and A + B-site ligands.
    Winkler M; Stephan D; Bieger S; Kühner P; Wolff F; Quast U
    J Pharmacol Exp Ther; 2007 Aug; 322(2):701-8. PubMed ID: 17495126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proximal C-terminal domain of sulphonylurea receptor 2A interacts with pore-forming Kir6 subunits in KATP channels.
    Rainbow RD; James M; Hudman D; Al Johi M; Singh H; Watson PJ; Ashmole I; Davies NW; Lodwick D; Norman RI
    Biochem J; 2004 Apr; 379(Pt 1):173-81. PubMed ID: 14672537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of pharmacochaperoning in a mammalian K
    Martin GM; Sung MW; Yang Z; Innes LM; Kandasamy B; David LL; Yoshioka C; Shyng SL
    Elife; 2019 Jul; 8():. PubMed ID: 31343405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryo-electron microscopy structures and progress toward a dynamic understanding of K
    Puljung MC
    J Gen Physiol; 2018 May; 150(5):653-669. PubMed ID: 29685928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of myometrial contraction by ATP-sensitive potassium (KATP) channel via activation of SUR2B and Kir 6.2 in mouse.
    Hong SH; Kyeong KS; Kim CH; Kim YC; Choi W; Yoo RY; Kim HS; Park YJ; Ji IW; Jeong EH; Kim HS; Xu WX; Lee SJ
    J Vet Med Sci; 2016 Aug; 78(7):1153-9. PubMed ID: 27086859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structurally distinct ligands rescue biogenesis defects of the KATP channel complex via a converging mechanism.
    Devaraneni PK; Martin GM; Olson EM; Zhou Q; Shyng SL
    J Biol Chem; 2015 Mar; 290(12):7980-91. PubMed ID: 25637631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Syntaxin-1A inhibits KATP channels by interacting with specific conserved motifs within sulfonylurea receptor 2A.
    Chao C; Liang T; Kang Y; Lin X; Xie H; Feng ZP; Gaisano HY
    J Mol Cell Cardiol; 2011 Nov; 51(5):790-802. PubMed ID: 21884702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential mechanisms of Cantú syndrome-associated gain of function mutations in the ABCC9 (SUR2) subunit of the KATP channel.
    Cooper PE; Sala-Rabanal M; Lee SJ; Nichols CG
    J Gen Physiol; 2015 Dec; 146(6):527-40. PubMed ID: 26621776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential structure of atrial and ventricular KATP: atrial KATP channels require SUR1.
    Flagg TP; Kurata HT; Masia R; Caputa G; Magnuson MA; Lefer DJ; Coetzee WA; Nichols CG
    Circ Res; 2008 Dec; 103(12):1458-65. PubMed ID: 18974387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of KATP channels to cellular metabolic disorders and the underlying structural basis.
    Li CG; Cui WY; Wang H
    Acta Pharmacol Sin; 2016 Jan; 37(1):134-42. PubMed ID: 26725741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation mechanism of ATP-sensitive K
    Puljung M; Vedovato N; Usher S; Ashcroft F
    Elife; 2019 Feb; 8():. PubMed ID: 30789344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insights on KATP channel regulation from cryo-EM structures.
    Driggers CM; Shyng SL
    J Gen Physiol; 2023 Jan; 155(1):. PubMed ID: 36441147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.