BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 29058211)

  • 1. The Effects of One Amino Acid Substitutions at the C-Terminal Region of Thermostable L2 Lipase by Computational and Experimental Approach.
    Sani HA; Shariff FM; Rahman RNZRA; Leow TC; Salleh AB
    Mol Biotechnol; 2018 Jan; 60(1):1-11. PubMed ID: 29058211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial reshaping of a lipase structure for thermostability: additive role of surface stabilizing single point mutations.
    Kumar R; Singh R; Kaur J
    Biochem Biophys Res Commun; 2014 May; 447(4):626-32. PubMed ID: 24751523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed Evolution of Recombinant C-Terminal Truncated Staphylococcus epidermidis Lipase AT2 for the Enhancement of Thermostability.
    Veno J; Ahmad Kamarudin NH; Mohamad Ali MS; Masomian M; Raja Abd Rahman RNZ
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29113034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis.
    Mohammadi M; Sepehrizadeh Z; Ebrahim-Habibi A; Shahverdi AR; Faramarzi MA; Setayesh N
    Enzyme Microb Technol; 2016 Nov; 93-94():18-28. PubMed ID: 27702479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures.
    Kumar V; Yedavalli P; Gupta V; Rao NM
    Protein Eng Des Sel; 2014 Mar; 27(3):73-82. PubMed ID: 24402332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Q177A and K173A/Q177A substitutions in thermostability and activity of the ELBn12 lipase.
    Farrokh P; Yakhchali B; Karkhane AA
    Biotechnol Appl Biochem; 2018 Mar; 65(2):203-211. PubMed ID: 28722269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical and structural characterization of two site-directed mutants of Staphylococcus xylosus lipase.
    Kolling DJ; Bertoldo JB; Brod FC; Vernal J; Terenzi H; Arisi AC
    Mol Biotechnol; 2010 Oct; 46(2):168-75. PubMed ID: 20387014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective disruption of disulphide bonds lowered activation energy and improved catalytic efficiency in TALipB from Trichosporon asahii MSR54: MD simulations revealed flexible lid and extended substrate binding area in the mutant.
    Singh Y; Gupta N; Verma VV; Goel M; Gupta R
    Biochem Biophys Res Commun; 2016 Mar; 472(1):223-30. PubMed ID: 26930469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introducing a salt bridge into the lipase of Stenotrophomonas maltophilia results in a very large increase in thermal stability.
    Wu JP; Li M; Zhou Y; Yang LR; Xu G
    Biotechnol Lett; 2015 Feb; 37(2):403-7. PubMed ID: 25257598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single Residue Substitution at
    Bukhari N; Leow ATC; Abd Rahman RNZR; Mohd Shariff F
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32731608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A newly isolated thermostable lipase from Bacillus sp.
    Shariff FM; Rahman RN; Basri M; Salleh AB
    Int J Mol Sci; 2011; 12(5):2917-34. PubMed ID: 21686158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes of Thermostability, Organic Solvent, and pH Stability in
    Ishak SNH; Masomian M; Kamarudin NHA; Ali MSM; Leow TC; Rahman RNZRA
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31137725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus.
    Wi AR; Jeon SJ; Kim S; Park HJ; Kim D; Han SJ; Yim JH; Kim HW
    Biotechnol Lett; 2014 Jun; 36(6):1295-302. PubMed ID: 24563306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unscrambling the effect of C-terminal tail deletion on the stability of a cold-adapted, organic solvent stable lipase from Staphylococcus epidermidis AT2.
    Kamarudin NH; Rahman RN; Ali MS; Leow TC; Basri M; Salleh AB
    Mol Biotechnol; 2014 Aug; 56(8):747-57. PubMed ID: 24771007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight.
    Ahmad S; Kamal MZ; Sankaranarayanan R; Rao NM
    J Mol Biol; 2008 Aug; 381(2):324-40. PubMed ID: 18599073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of Bacillus lipase by directed evolution for enhanced thermal stability: effect of isoleucine to threonine mutation at protein surface.
    Khurana J; Singh R; Kaur J
    Mol Biol Rep; 2011 Jun; 38(5):2919-26. PubMed ID: 20127521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filling the Void: Introducing Aromatic Interactions into Solvent Tunnels To Enhance Lipase Stability in Methanol.
    Gihaz S; Kanteev M; Pazy Y; Fishman A
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residue Tyr224 is critical for the thermostability of Geobacillus sp. RD-2 lipase.
    Wu L; Liu B; Hong Y; Sheng D; Shen Y; Ni J
    Biotechnol Lett; 2010 Jan; 32(1):107-12. PubMed ID: 19763406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of thermal stability via outer-loop ion pair interaction of mutated T1 lipase from Geobacillus zalihae strain T1.
    Ruslan R; Rahman RNZRA; Leow TC; Ali MSM; Basri M; Salleh AB
    Int J Mol Sci; 2012; 13(1):943-960. PubMed ID: 22312296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of N terminus long range non covalent interactions shifted temp.opt 25°C to cold: Evolution of point mutant Bacillus lipase by error prone PCR.
    Goomber S; Kumar A; Kaur J
    Gene; 2016 Jan; 576(1 Pt 2):237-43. PubMed ID: 26456196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.