These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 29058367)
1. CRISPR/Cas9-Based Counterselection Boosts Recombineering Efficiency in Pseudomonas putida. Aparicio T; de Lorenzo V; Martínez-García E Biotechnol J; 2018 May; 13(5):e1700161. PubMed ID: 29058367 [TBL] [Abstract][Full Text] [Related]
2. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing. Wu Z; Chen Z; Gao X; Li J; Shang G Appl Microbiol Biotechnol; 2019 Mar; 103(6):2783-2795. PubMed ID: 30762073 [TBL] [Abstract][Full Text] [Related]
3. CRISPR/Cas9-enhanced ssDNA recombineering for Pseudomonas putida. Aparicio T; de Lorenzo V; Martínez-García E Microb Biotechnol; 2019 Sep; 12(5):1076-1089. PubMed ID: 31237429 [TBL] [Abstract][Full Text] [Related]
4. Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system. Sun J; Wang Q; Jiang Y; Wen Z; Yang L; Wu J; Yang S Microb Cell Fact; 2018 Mar; 17(1):41. PubMed ID: 29534717 [TBL] [Abstract][Full Text] [Related]
6. Efficient and Precise Genome Editing in Corts AD; Thomason LC; Gill RT; Gralnick JA ACS Synth Biol; 2019 Aug; 8(8):1877-1889. PubMed ID: 31277550 [TBL] [Abstract][Full Text] [Related]
7. ReScribe: An Unrestrained Tool Combining Multiplex Recombineering and Minimal-PAM ScCas9 for Genome Recoding Asin-Garcia E; Martin-Pascual M; Garcia-Morales L; van Kranenburg R; Martins Dos Santos VAP ACS Synth Biol; 2021 Oct; 10(10):2672-2688. PubMed ID: 34547891 [TBL] [Abstract][Full Text] [Related]
8. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. Cook TB; Rand JM; Nurani W; Courtney DK; Liu SA; Pfleger BF J Ind Microbiol Biotechnol; 2018 Jul; 45(7):517-527. PubMed ID: 29299733 [TBL] [Abstract][Full Text] [Related]
9. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations. Li J; Sun J; Gao X; Wu Z; Shang G Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090 [TBL] [Abstract][Full Text] [Related]
10. Targetron-Assisted Delivery of Exogenous DNA Sequences into Velázquez E; Al-Ramahi Y; Tellechea-Luzardo J; Krasnogor N; de Lorenzo V ACS Synth Biol; 2021 Oct; 10(10):2552-2565. PubMed ID: 34601868 [TBL] [Abstract][Full Text] [Related]
11. Expanding the Reach of Recombineering to Environmental Bacteria. Borrero-de Acuña JM; Poblete-Castro I Trends Biotechnol; 2020 Jul; 38(7):684-685. PubMed ID: 32312593 [TBL] [Abstract][Full Text] [Related]
12. CRISPR-Cas9 Editing of the Synthesis of Biodegradable Polyesters Polyhydroxyalkanaotes (PHA) in Pseudomonas putida KT2440. Liu S; Narancic T; Davis C; O'Connor KE Methods Mol Biol; 2022; 2397():341-358. PubMed ID: 34813072 [TBL] [Abstract][Full Text] [Related]
13. A rapid and versatile tool for genomic engineering in Lactococcus lactis. Guo T; Xin Y; Zhang Y; Gu X; Kong J Microb Cell Fact; 2019 Jan; 18(1):22. PubMed ID: 30704485 [TBL] [Abstract][Full Text] [Related]
14. Accelerated genome engineering of Pseudomonas putida by I-SceI-mediated recombination and CRISPR-Cas9 counterselection. Wirth NT; Kozaeva E; Nikel PI Microb Biotechnol; 2020 Jan; 13(1):233-249. PubMed ID: 30861315 [TBL] [Abstract][Full Text] [Related]
15. The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42. Aparicio T; Jensen SI; Nielsen AT; de Lorenzo V; Martínez-García E Biotechnol J; 2016 Oct; 11(10):1309-1319. PubMed ID: 27367544 [TBL] [Abstract][Full Text] [Related]
17. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843 [TBL] [Abstract][Full Text] [Related]
18. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System. Altenbuchner J Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565 [TBL] [Abstract][Full Text] [Related]
19. Genome Editing in Staphylococcus aureus by Conditional Recombineering and CRISPR/Cas9-Mediated Counterselection. Penewit K; Salipante SJ Methods Mol Biol; 2020; 2050():127-143. PubMed ID: 31468487 [TBL] [Abstract][Full Text] [Related]
20. Recombination-Independent Genome Editing through CRISPR/Cas9-Enhanced TargeTron Delivery. Velázquez E; Lorenzo V; Al-Ramahi Y ACS Synth Biol; 2019 Sep; 8(9):2186-2193. PubMed ID: 31419111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]