These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29058436)

  • 1. Silicon Nanocrystal Superlattice Nucleation and Growth.
    Guillaussier A; Yu Y; Voggu VR; Aigner W; Cabezas CS; Houck DW; Shah T; Smilgies DM; Pereira RN; Stutzmann M; Korgel BA
    Langmuir; 2017 Nov; 33(45):13068-13076. PubMed ID: 29058436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal nanocrystal superlattice nucleation and growth.
    Sigman MB; Saunders AE; Korgel BA
    Langmuir; 2004 Feb; 20(3):978-83. PubMed ID: 15773133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices.
    Wang Z; Bian K; Nagaoka Y; Fan H; Cao YC
    J Am Chem Soc; 2017 Oct; 139(41):14476-14482. PubMed ID: 28953387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembly and Thermal Stability of Binary Superlattices of Gold and Silicon Nanocrystals.
    Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2013 Oct; 4(21):. PubMed ID: 24327828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientationally Ordered Silicon Nanocrystal Cuboctahedra in Superlattices.
    Yu Y; Lu X; Guillaussier A; Voggu VR; Pineros W; de la Mata M; Arbiol J; Smilgies DM; Truskett TM; Korgel BA
    Nano Lett; 2016 Dec; 16(12):7814-7821. PubMed ID: 27960489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals.
    Caruntu D; Rostamzadeh T; Costanzo T; Parizi SS; Caruntu G
    Nanoscale; 2015 Aug; 7(30):12955-69. PubMed ID: 26168304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-temperature crystallization of nanocrystals into three-dimensional superlattices.
    Wu L; Willis JJ; McKay IS; Diroll BT; Qin J; Cargnello M; Tassone CJ
    Nature; 2017 Aug; 548(7666):197-201. PubMed ID: 28759888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure/processing relationships of highly ordered lead salt nanocrystal superlattices.
    Hanrath T; Choi JJ; Smilgies DM
    ACS Nano; 2009 Oct; 3(10):2975-88. PubMed ID: 19728701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring Nanocrystal Self-Assembly in Real Time Using In Situ Small-Angle X-Ray Scattering.
    Lokteva I; Koof M; Walther M; Grübel G; Lehmkühler F
    Small; 2019 May; 15(20):e1900438. PubMed ID: 30993864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competing Interactions between Various Entropic Forces toward Assembly of Pt3Ni Octahedra into a Body-Centered Cubic Superlattice.
    Li R; Zhang J; Tan R; Gerdes F; Luo Z; Xu H; Hollingsworth JA; Klinke C; Chen O; Wang Z
    Nano Lett; 2016 Apr; 16(4):2792-9. PubMed ID: 26977777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-dependent multiple twinning in nanocrystal superlattices.
    Rupich SM; Shevchenko EV; Bodnarchuk MI; Lee B; Talapin DV
    J Am Chem Soc; 2010 Jan; 132(1):289-96. PubMed ID: 19968283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible, Tunable, Electric-Field Driven Assembly of Silver Nanocrystal Superlattices.
    Yu Y; Yu D; Orme CA
    Nano Lett; 2017 Jun; 17(6):3862-3869. PubMed ID: 28511013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering.
    Weidman MC; Smilgies DM; Tisdale WA
    Nat Mater; 2016 Jul; 15(7):775-81. PubMed ID: 26998914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring Self-Assembly and Ligand Exchange of PbS Nanocrystal Superlattices at the Liquid/Air Interface in Real Time.
    Maiti S; André A; Banerjee R; Hagenlocher J; Konovalov O; Schreiber F; Scheele M
    J Phys Chem Lett; 2018 Feb; 9(4):739-744. PubMed ID: 29365268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials.
    Boles MA; Engel M; Talapin DV
    Chem Rev; 2016 Sep; 116(18):11220-89. PubMed ID: 27552640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Importance of Unbound Ligand in Nanocrystal Superlattice Formation.
    Winslow SW; Swan JW; Tisdale WA
    J Am Chem Soc; 2020 May; 142(21):9675-9685. PubMed ID: 32401509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic Cracking of Nanocrystal Superlattices.
    Diroll BT; Ma X; Wu Y; Murray CB
    Nano Lett; 2017 Oct; 17(10):6501-6506. PubMed ID: 28921994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy landscape of self-assembled superlattices of PbSe nanocrystals.
    Quan Z; Wu D; Zhu J; Evers WH; Boncella JM; Siebbeles LD; Wang Z; Navrotsky A; Xu H
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9054-7. PubMed ID: 24927573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.