These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 29058612)

  • 1. Skeletal muscle mechanics, energetics and plasticity.
    Lieber RL; Roberts TJ; Blemker SS; Lee SSM; Herzog W
    J Neuroeng Rehabil; 2017 Oct; 14(1):108. PubMed ID: 29058612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substantial effects of epimuscular myofascial force transmission on muscular mechanics have major implications on spastic muscle and remedial surgery.
    Yucesoy CA; Huijing PA
    J Electromyogr Kinesiol; 2007 Dec; 17(6):664-79. PubMed ID: 17395489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle mechanics: questions, problems and possible solutions.
    Herzog W
    J Neuroeng Rehabil; 2017 Sep; 14(1):98. PubMed ID: 28915834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residual force enhancement in skeletal muscle.
    Herzog W; Lee EJ; Rassier DE
    J Physiol; 2006 Aug; 574(Pt 3):635-42. PubMed ID: 16709641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics.
    Granzier H; Helmes M; Trombitás K
    Biophys J; 1996 Jan; 70(1):430-42. PubMed ID: 8770219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions.
    Herzog W
    J Appl Physiol (1985); 2014 Jun; 116(11):1407-17. PubMed ID: 23429875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Work Done by Titin Protein Folding Assists Muscle Contraction.
    Rivas-Pardo JA; Eckels EC; Popa I; Kosuri P; Linke WA; Fernández JM
    Cell Rep; 2016 Feb; 14(6):1339-1347. PubMed ID: 26854230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting elasticity: Modeling the influence of neural control on mechanics and energetics of ankle muscle-tendons during human hopping.
    Robertson BD; Sawicki GS
    J Theor Biol; 2014 Jul; 353():121-32. PubMed ID: 24641822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle Function from Organisms to Molecules.
    Nishikawa KC; Monroy JA; Tahir U
    Integr Comp Biol; 2018 Aug; 58(2):194-206. PubMed ID: 29850810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the passive force enhancement in skeletal muscles.
    Lee EJ; Joumaa V; Herzog W
    J Biomech; 2007; 40(4):719-27. PubMed ID: 17097664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. History dependence of force production in skeletal muscle: a proposal for mechanisms.
    Herzog W
    J Electromyogr Kinesiol; 1998 Apr; 8(2):111-7. PubMed ID: 9680951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin-titin interaction.
    Heidlauf T; Klotz T; Rode C; Altan E; Bleiler C; Siebert T; Röhrle O
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1423-1437. PubMed ID: 26935301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eccentric contraction: unraveling mechanisms of force enhancement and energy conservation.
    Nishikawa K
    J Exp Biol; 2016 Jan; 219(Pt 2):189-96. PubMed ID: 26792330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of titin in eccentric muscle contraction.
    Herzog W
    J Exp Biol; 2014 Aug; 217(Pt 16):2825-33. PubMed ID: 25122914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sarcomere force-length relationship in an intact muscle-tendon unit.
    Moo EK; Leonard TR; Herzog W
    J Exp Biol; 2020 Mar; 223(Pt 6):. PubMed ID: 32098882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive extensibility of skeletal muscle: review of the literature with clinical implications.
    Gajdosik RL
    Clin Biomech (Bristol, Avon); 2001 Feb; 16(2):87-101. PubMed ID: 11222927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The force-length relationship of mechanically isolated sarcomeres.
    Herzog W; Joumaa V; Leonard TR
    Adv Exp Med Biol; 2010; 682():141-61. PubMed ID: 20824524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myofascial force transmission and tendon transfer for patients suffering from spastic paresis: a review and some new observations.
    Smeulders MJ; Kreulen M
    J Electromyogr Kinesiol; 2007 Dec; 17(6):644-56. PubMed ID: 17369052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanism accounting for independence on starting length of tension increase in ramp stretches of active skeletal muscle at short half-sarcomere lengths.
    Till O; Siebert T; Blickhan R
    J Theor Biol; 2010 Sep; 266(1):117-23. PubMed ID: 20600144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Length dependence of active force production in skeletal muscle.
    Rassier DE; MacIntosh BR; Herzog W
    J Appl Physiol (1985); 1999 May; 86(5):1445-57. PubMed ID: 10233103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.