These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
446 related articles for article (PubMed ID: 29058767)
1. Bioinspired Surfaces with Superwettability for Anti-Icing and Ice-Phobic Application: Concept, Mechanism, and Design. Zhang S; Huang J; Cheng Y; Yang H; Chen Z; Lai Y Small; 2017 Dec; 13(48):. PubMed ID: 29058767 [TBL] [Abstract][Full Text] [Related]
2. Icephobic/anti-icing properties of superhydrophobic surfaces. Huang W; Huang J; Guo Z; Liu W Adv Colloid Interface Sci; 2022 Jun; 304():102658. PubMed ID: 35381422 [TBL] [Abstract][Full Text] [Related]
3. Bioinspired Special Wettability Surfaces: From Fundamental Research to Water Harvesting Applications. Zhang S; Huang J; Chen Z; Lai Y Small; 2017 Jan; 13(3):. PubMed ID: 27935211 [TBL] [Abstract][Full Text] [Related]
4. Icephobic Strategies and Materials with Superwettability: Design Principles and Mechanism. Jamil MI; Ali A; Haq F; Zhang Q; Zhan X; Chen F Langmuir; 2018 Dec; 34(50):15425-15444. PubMed ID: 30445813 [TBL] [Abstract][Full Text] [Related]
5. The mechanisms of anti-icing properties degradation for slippery liquid-infused porous surfaces under shear stresses. Boinovich LB; Chulkova EV; Emelyanenko KA; Domantovsky AG; Emelyanenko AM J Colloid Interface Sci; 2022 Mar; 609():260-268. PubMed ID: 34896827 [TBL] [Abstract][Full Text] [Related]
6. Liquid infused surfaces with anti-icing properties. Wang G; Guo Z Nanoscale; 2019 Dec; 11(47):22615-22635. PubMed ID: 31755495 [TBL] [Abstract][Full Text] [Related]
7. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. Kim P; Wong TS; Alvarenga J; Kreder MJ; Adorno-Martinez WE; Aizenberg J ACS Nano; 2012 Aug; 6(8):6569-77. PubMed ID: 22680067 [TBL] [Abstract][Full Text] [Related]
8. Recent advances of bio-inspired anti-icing surfaces. Jiang S; Diao Y; Yang H Adv Colloid Interface Sci; 2022 Oct; 308():102756. PubMed ID: 36007284 [TBL] [Abstract][Full Text] [Related]
9. Research Progress of Superhydrophobic Materials in the Field of Anti-/De-Icing and Their Preparation: A Review. Cong Q; Qin X; Chen T; Jin J; Liu C; Wang M Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512424 [TBL] [Abstract][Full Text] [Related]
10. Infusing Silicone and Camellia Seed Oils into Micro-/Nanostructures for Developing Novel Anti-Icing/Frosting Surfaces for Food Freezing Applications. Zhu Z; Liang H; Sun DW ACS Appl Mater Interfaces; 2023 Mar; 15(11):14874-83. PubMed ID: 36897285 [TBL] [Abstract][Full Text] [Related]
12. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication. Pan R; Zhang H; Zhong M ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114 [TBL] [Abstract][Full Text] [Related]
13. Icephobic and Anticorrosion Coatings Deposited by Electrospinning on Aluminum Alloys for Aerospace Applications. Vicente A; Rivero PJ; García P; Mora J; Carreño F; Palacio JF; Rodríguez R Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883667 [TBL] [Abstract][Full Text] [Related]
14. Recent advances in bioinspired superhydrophobic ice-proof surfaces: challenges and prospects. Feng X; Zhang X; Tian G Nanoscale; 2022 Apr; 14(16):5960-5993. PubMed ID: 35411360 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Anti-Icing, Antifouling, and Anticorrosion Performances of the Superhydrophobic and Lubricant-Infused Coatings Based on a Hollow-Structured Kapok Fiber. Li D; Liu J; Liu Q; Yu J; Zhu J; Chen R; Lin Z; Wang J Langmuir; 2024 Mar; 40(10):5420-5432. PubMed ID: 38423092 [TBL] [Abstract][Full Text] [Related]
16. Robust Slippery Coating with Superior Corrosion Resistance and Anti-Icing Performance for AZ31B Mg Alloy Protection. Zhang J; Gu C; Tu J ACS Appl Mater Interfaces; 2017 Mar; 9(12):11247-11257. PubMed ID: 28277644 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Wilson PW; Lu W; Xu H; Kim P; Kreder MJ; Alvarenga J; Aizenberg J Phys Chem Chem Phys; 2013 Jan; 15(2):581-5. PubMed ID: 23183624 [TBL] [Abstract][Full Text] [Related]
18. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth. Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T Langmuir; 2015 Oct; 31(39):10799-806. PubMed ID: 26367109 [TBL] [Abstract][Full Text] [Related]
19. Bio-inspired strategies for anti-icing. Lv J; Song Y; Jiang L; Wang J ACS Nano; 2014 Apr; 8(4):3152-69. PubMed ID: 24592934 [TBL] [Abstract][Full Text] [Related]
20. Anti-Icing Mechanism for a Novel Slippery Aluminum Stranded Conductor. Xiang H; Yuan Y; Zhu T; Dai X; Zhang C; Gai Y; Liao R ACS Appl Mater Interfaces; 2023 Jul; 15(28):34215-34229. PubMed ID: 37413794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]