BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 290590)

  • 1. 3H-glucosamine electron microscope autoradiography after isolated labeling of the enamel organ or the dental papilla followed by reassociated toothgerm culture.
    Frank RM; Osman M; Meyer JM; Ruch JV
    J Biol Buccale; 1979 Sep; 7(3):225-41. PubMed ID: 290590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of the basement membrane from the inner and outer dental epithelia of trypsin-isolated mouse molar enamel organs.
    Osman M; Ruch JV
    J Biol Buccale; 1981 Jun; 9(2):129-39. PubMed ID: 6943139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perlecan, a basement membrane-type heparan sulfate proteoglycan, in the enamel organ: its intraepithelial localization in the stellate reticulum.
    Ida-Yonemochi H; Ohshiro K; Swelam W; Metwaly H; Saku T
    J Histochem Cytochem; 2005 Jun; 53(6):763-72. PubMed ID: 15928325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [3H]glucosamine and [3H]proline radioautography of embryonic mouse dental basement membrane.
    Osman M; Ruch JV
    J Craniofac Genet Dev Biol; 1981; 1(1):95-108. PubMed ID: 7341645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dental cell interaction with extracellular-matrix constituents: type-I collagen and fibronectin.
    Lesot H; Karcher-Djuricic V; Mark M; Meyer JM; Ruch JV
    Differentiation; 1985; 29(2):176-81. PubMed ID: 3899832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of basement membrane components in the dental papilla mesenchyme of monkey tooth germs--an immunohistochemical study.
    Sawada T
    Connect Tissue Res; 1995; 32(1-4):55-61. PubMed ID: 7554936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cellular changes at the level of the outer enamel epithelium during vascularization of the enamel organ in the rat].
    Bonnaud A
    J Biol Buccale; 1984 Sep; 12(3):225-37. PubMed ID: 6594333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro penetration of 125I-amelogenin into the enamel and enamel organ of rat incisors.
    Blumen G; Robinson C; Merzel J; Barrichello TL
    J Biol Buccale; 1991 Dec; 19(4):305-8. PubMed ID: 1791168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoradiographic visualization of glycoproteins and glycosaminoglycans in the epithelio-mesenchymal interface of developing mouse tooth germ.
    Hurmerinta K
    Scand J Dent Res; 1982 Aug; 90(4):278-85. PubMed ID: 6957967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basement membrane reconstitution and cytodifferentiation of odontoblasts in isochronal and heterochronal reassociations of enamel organs and pulps.
    Karcher-Djuricic V; Osman M; Meyer JM; Staubli A; Ruch JV
    J Biol Buccale; 1978 Dec; 6(4):257-65. PubMed ID: 283067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms by which the enamel organ controls calcium entry into developing enamel.
    Crenshaw MA; Takano Y
    J Dent Res; 1982 Dec; Spec No():1574-9. PubMed ID: 6292277
    [No Abstract]   [Full Text] [Related]  

  • 12. Basal lamina persistence during epithelial-mesenchymal interactions in murine tooth development in vitro.
    Slavkin HC; Brownell AG; Bringas P; MacDougall M; Bessem C
    J Craniofac Genet Dev Biol; 1983; 3(4):387-407. PubMed ID: 6662909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early determination and permissive expression of amelogenin transcription during mouse mandibular first molar development.
    Couwenhoven RI; Snead ML
    Dev Biol; 1994 Jul; 164(1):290-9. PubMed ID: 8026631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmission and scanning electron microscopic observations of epithelial-mesenchymal interface of rat tooth germs using dithiothreitol separation.
    Feng XY
    Arch Oral Biol; 2003 Mar; 48(3):237-48. PubMed ID: 12648562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of vinblastine on the cell structure and activity in the rat incisor enamel organ during the secretory stage in vivo as shown by radioautography using 3H-proline, 3H-serine and 3H-fucose.
    Goldberg M; Escaig F; Septier D
    J Biol Buccale; 1982 Sep; 10(3):237-54. PubMed ID: 6816793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [35S]autoradiographic study of sulfated GAG accumulation and turnover in embryonic mouse tooth germs.
    Lau EC; Boukari A; Aréchaga J; Osman M; Ruch JV
    J Craniofac Genet Dev Biol; 1983; 3(2):117-31. PubMed ID: 6619274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression, localisation and synthesis of versican by the enamel organ of developing mouse molar tooth germ: an in vivo and in vitro study.
    Jiang BZ; Yokohama-Tamaki T; Wang ZL; Obara N; Shibata S
    Arch Oral Biol; 2010 Dec; 55(12):995-1006. PubMed ID: 20813348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA synthesis of enamel organ epithelium in vitro is enhanced by co-cultivation with non-viable mesenchyme cells.
    Brownell AG; Rovero LJ
    J Dent Res; 1980 Jun; 59(6):1075-80. PubMed ID: 6929299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructure of basement membranes in monkey and shark teeth at an early stage of development.
    Sawada T
    Med Electron Microsc; 2003 Dec; 36(4):204-12. PubMed ID: 16228653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in ultrastructural distribution of dental basement membrane heparan sulfate during early mouse tooth development.
    Kogaya Y; Kim S; Akisaka T
    J Biol Buccale; 1990 Jun; 18(2):109-15. PubMed ID: 2211576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.