These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 29059020)
21. Temporal Trends in Variability of Respirable Dust and Respirable Quartz Concentrations in the European Industrial Minerals Sector. Zilaout H; Houba R; Kromhout H Ann Work Expo Health; 2023 Mar; 67(3):392-401. PubMed ID: 36594971 [TBL] [Abstract][Full Text] [Related]
22. Crystalline silica dust and respirable particulate matter during indoor concrete grinding - wet grinding and ventilated grinding compared with uncontrolled conventional grinding. Akbar-Khanzadeh F; Milz S; Ames A; Susi PP; Bisesi M; Khuder SA; Akbar-Khanzadeh M J Occup Environ Hyg; 2007 Oct; 4(10):770-9. PubMed ID: 17763068 [TBL] [Abstract][Full Text] [Related]
23. Exposure to Quartz in Finnish Workplaces Declined during the First Six Years after the Signing of the NEPSI Agreement, but Evened out between 2013 and 2017. Tuomi T; Linnainmaa M; Pennanen S Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29751545 [TBL] [Abstract][Full Text] [Related]
24. Respiratory health and inflammatory markers - Exposure to respirable dust and quartz and chemical binders in Swedish iron foundries. Andersson L; Bryngelsson IL; Hedbrant A; Persson A; Johansson A; Ericsson A; Lindell I; Stockfelt L; Särndahl E; Westberg H PLoS One; 2019; 14(11):e0224668. PubMed ID: 31675355 [TBL] [Abstract][Full Text] [Related]
25. Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment. Galea KS; Mair C; Alexander C; de Vocht F; van Tongeren M Ann Occup Hyg; 2016 Mar; 60(2):263-9. PubMed ID: 26403363 [TBL] [Abstract][Full Text] [Related]
26. Occupational quartz and particle exposure affect systemic levels of inflammatory markers related to inflammasome activation and cardiovascular disease. Hedbrant A; Engström C; Andersson L; Eklund D; Westberg H; Persson A; Särndahl E Environ Health; 2023 Mar; 22(1):25. PubMed ID: 36907865 [TBL] [Abstract][Full Text] [Related]
27. Variability of exposure and estimation of cumulative exposure in a manually operated coal mine. Mamuya SH; Bråtveit M; Mwaiselage J; Moen BE Ann Occup Hyg; 2006 Oct; 50(7):737-45. PubMed ID: 16777910 [TBL] [Abstract][Full Text] [Related]
28. Respirable silica dust suppression during artificial stone countertop cutting. Cooper JH; Johnson DL; Phillips ML Ann Occup Hyg; 2015 Jan; 59(1):122-6. PubMed ID: 25326187 [TBL] [Abstract][Full Text] [Related]
29. A novel strategy for retrospective exposure assessment in the Norwegian silicon carbide industry. Føreland S; Bugge MD; Bakke B; Bye E; Eduard W J Occup Environ Hyg; 2012; 9(4):230-41. PubMed ID: 22448628 [TBL] [Abstract][Full Text] [Related]
30. 15 years of monitoring occupational exposure to respirable dust and quartz within the European industrial minerals sector. Zilaout H; Vlaanderen J; Houba R; Kromhout H Int J Hyg Environ Health; 2017 Jul; 220(5):810-819. PubMed ID: 28416465 [TBL] [Abstract][Full Text] [Related]
31. Inflammatory and coagulatory markers and exposure to different size fractions of particle mass, number and surface area air concentrations in Swedish iron foundries, in particular respirable quartz. Westberg H; Hedbrant A; Persson A; Bryngelsson IL; Johansson A; Ericsson A; Sjögren B; Stockfelt L; Särndahl E; Andersson L Int Arch Occup Environ Health; 2019 Nov; 92(8):1087-1098. PubMed ID: 31165309 [TBL] [Abstract][Full Text] [Related]
32. Determination of exposure to respirable quartz in the stone crushing units at Azendarian-West of Iran. Bahrami AR; Golbabai F; Mahjub H; Qorbani F; Aliabadi M; Barqi M Ind Health; 2008 Aug; 46(4):404-8. PubMed ID: 18716390 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of the approach to respirable quartz exposure control in U.S. coal mines. Joy GJ J Occup Environ Hyg; 2012; 9(2):65-8. PubMed ID: 22181563 [TBL] [Abstract][Full Text] [Related]
34. Benefits and limitations of field-based monitoring approaches for respirable dust and crystalline silica applied in a sandstone quarry. Cauda E; Dolan E; Cecala A; Louk K; Yekich M; Chubb L; Lingenfelter A J Occup Environ Hyg; 2022 Dec; 19(12):730-741. PubMed ID: 36219680 [TBL] [Abstract][Full Text] [Related]
35. Retrospective Assessment of Respirable Quartz Exposure for a Silicosis Study of the Industrial Sand Industry. Rando RJ; Vacek PM; Glenn RE; Kwon CW; Parker JE Ann Work Expo Health; 2018 Oct; 62(8):1021-1032. PubMed ID: 30016388 [TBL] [Abstract][Full Text] [Related]
36. Assessment of Korean farmer's exposure level to dust in pig buildings. Kim KY; Ko HJ; Kim YS; Kim CN Ann Agric Environ Med; 2008; 15(1):51-8. PubMed ID: 18581979 [TBL] [Abstract][Full Text] [Related]
37. A comparison of the performance of samplers for respirable dust in workplaces and laboratory analysis for respirable quartz. Verpaele S; Jouret J Ann Occup Hyg; 2013 Jan; 57(1):54-62. PubMed ID: 22826536 [TBL] [Abstract][Full Text] [Related]
38. Determination and Prediction of Respirable Dust and Crystalline-Free Silica in the Taiwanese Foundry Industry. Kuo CT; Chiu FF; Bao BY; Chang TY Int J Environ Res Public Health; 2018 Sep; 15(10):. PubMed ID: 30257469 [No Abstract] [Full Text] [Related]
39. Application of a Fourier Transform Infrared (FTIR) Principal Component Regression (PCR) Chemometric Method for the Quantification of Respirable Crystalline Silica (Quartz), Kaolinite, and Coal in Coal Mine Dusts from Australia, UK, and South Africa. Stacey P; Clegg F; Rhyder G; Sammon C Ann Work Expo Health; 2022 Jul; 66(6):781-793. PubMed ID: 35088072 [TBL] [Abstract][Full Text] [Related]
40. Occupational exposure to dust in quartz manufacturing industry. Fulekar MH Ann Occup Hyg; 1999 May; 43(4):269-73. PubMed ID: 10432870 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]