These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29059198)

  • 21. Metabolic, cardiopulmonary, and gait profiles of recently injured and noninjured runners.
    Peng L; Seay AN; Montero C; Barnes LL; Vincent KR; Conrad BP; Chen C; Vincent HK
    PM R; 2015 Jan; 7(1):26-33. PubMed ID: 24998402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run.
    Hunter I; Smith GA
    Eur J Appl Physiol; 2007 Aug; 100(6):653-61. PubMed ID: 17602239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationship between shock attenuation and stride length during running at different velocities.
    Mercer JA; Vance J; Hreljac A; Hamill J
    Eur J Appl Physiol; 2002 Aug; 87(4-5):403-8. PubMed ID: 12172880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating dynamic similarity of fixed, self-selected and anatomically scaled speeds in non-linear analysis of gait during treadmill running.
    Strongman C; Morrison A
    Hum Mov Sci; 2021 Apr; 76():102768. PubMed ID: 33556908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uphill running at iso-efficiency speed.
    Padulo J; Annino G; Smith L; Migliaccio GM; Camino R; Tihanyi J; D'Ottavio S
    Int J Sports Med; 2012 Oct; 33(10):819-23. PubMed ID: 22562739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Years of running experience influences stride-to-stride fluctuations and adaptive response during step frequency perturbations in healthy distance runners.
    Agresta CE; Goulet GC; Peacock J; Housner J; Zernicke RF; Zendler JD
    Gait Posture; 2019 May; 70():376-382. PubMed ID: 30959429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lower extremity biomechanical relationships with different speeds in traditional, minimalist, and barefoot footwear.
    Fredericks W; Swank S; Teisberg M; Hampton B; Ridpath L; Hanna JB
    J Sports Sci Med; 2015 Jun; 14(2):276-83. PubMed ID: 25983575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energetically optimal stride frequency in running: the effects of incline and decline.
    Snyder KL; Farley CT
    J Exp Biol; 2011 Jun; 214(Pt 12):2089-95. PubMed ID: 21613526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Will the Foot Strike Pattern Change at Different Running Speeds with or without Wearing Shoes?
    Lai YJ; Chou W; Chu IH; Wang YL; Lin YJ; Tu SJ; Guo LY
    Int J Environ Res Public Health; 2020 Aug; 17(17):. PubMed ID: 32825222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stride length in distance running: velocity, body dimensions, and added mass effects.
    Cavanagh PR; Kram R
    Med Sci Sports Exerc; 1989 Aug; 21(4):467-79. PubMed ID: 2674599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinematic, Cardiopulmonary, and Metabolic Responses of Overweight Runners While Running at Self-Selected and Standardized Speeds.
    Zdziarski LA; Chen C; Horodyski M; Vincent KR; Vincent HK
    PM R; 2016 Feb; 8(2):152-60. PubMed ID: 26146194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Variability of gait patterns during unconstrained walking assessed by satellite positioning (GPS).
    Terrier P; Schutz Y
    Eur J Appl Physiol; 2003 Nov; 90(5-6):554-61. PubMed ID: 12905048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does running speed affect the response of joint level mechanics in non-rearfoot strike runners to footwear of varying longitudinal bending stiffness?
    Day EM; Hahn ME
    Gait Posture; 2021 Feb; 84():187-191. PubMed ID: 33360383
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Running speed does not influence the asymmetry of kinematic variables of the lower limb joints in novice runners.
    Jiang X; Chen H; Sun D; Baker JS; Gu Y
    Acta Bioeng Biomech; 2021; 23(1):69-81. PubMed ID: 34846043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Variability and fluctuation in running gait cycle of trained runners and non-runners.
    Nakayama Y; Kudo K; Ohtsuki T
    Gait Posture; 2010 Mar; 31(3):331-5. PubMed ID: 20056419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stride-to-stride variability and complexity between novice and experienced runners during a prolonged run at anaerobic threshold speed.
    Mo S; Chow DHK
    Gait Posture; 2018 Jul; 64():7-11. PubMed ID: 29803083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of stride frequency on metabolic costs and rating of perceived exertion during walking in water.
    Masumoto K; Nishizaki Y; Hamada A
    Gait Posture; 2013 Jun; 38(2):335-9. PubMed ID: 23332190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ambulatory running speed estimation using an inertial sensor.
    Yang S; Mohr C; Li Q
    Gait Posture; 2011 Oct; 34(4):462-6. PubMed ID: 21807521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of speed and time on gait dynamics.
    Thomas KS; Russell DM; Van Lunen BL; Colberg SR; Morrison S
    Hum Mov Sci; 2017 Aug; 54():320-330. PubMed ID: 28641172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.